When an animal's oxygen supply is limited, bisphospoglyceric acid increases the oxygen level by acclamitization.
Acclimatization is the term used to describe the advantageous physiological changes brought on by frequent exposure to a hot climate. Increased sweating effectiveness is one of these physiological modifications. It is converted into a molecule identical to that of 2,3-bisphosphoglyceric acid (2,3BPG). A mechanism called 2,3BPG is employed to control the effective emission of oxygen from haemoglobin. As one of the processes of acclimatization, 1,3-BPG levels will rise in a patient's blood when concentration is low. Low oxygen levels increase 1,3BPG levels, which in turn increase 2,3BPG levels and change how well oxygen separates from hemoglobin.
Learn more about Bisphospoglyceric acid
brainly.com/question/8885734
#SPJ4
Answer:
<h3>Peripheral nervous system</h3>
The peripheral nervous system (PNS) is divided into the somatic nervous system and the autonomic nervous system. The somatic nervous system (SoNS) is the part of the peripheral nervous system associated with the voluntary control of body movements via skeletal muscles.
Animals because that is not part of a cell house
Answer:
Results
We systematically analyze and compare how different modelling methodologies can be used to describe translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution matches those of numerical simulation from other methods and acts as a complementary tool to analytical approximations and simulations. The advantages and limitations of various codon-based models are compared, and illustrated by examples with real biological complexities such as slow codons, premature termination and feedback regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters. Furthermore, the update rule affects the steady state solution.
Conclusions
The codon-based models are based on different levels of abstraction. Our analysis suggests that a multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are robust with respect to the choice of modelling methodology, and when (and why) important differences may arise. This approach also allows for an optimal use of analysis tools, which is especially important when additional complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting translation, and results in an improved predictive framework for applications in systems and synthetic biology.
hope it help friends