Answer:
x = -3
y = 0
Step-by-step explanation:
<u>Given</u><u> </u><u>equations</u><u> </u><u>:</u><u>-</u><u> </u>
<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u>
<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u>
<u>From</u><u> </u><u>(</u><u> </u><u>i</u><u> </u><u>)</u><u> </u><u> </u>
<u>-x</u><u> </u><u>+</u><u> </u><u>2</u><u>y</u><u> </u><u>=</u><u> </u><u>3</u><u> </u>
<u>-x</u><u> </u><u>=</u><u> </u><u>3</u><u> </u><u>-</u><u> </u><u>2</u><u>y</u><u> </u>
<u>x</u><u> </u><u>=</u><u> </u><u>2</u><u>y</u><u> </u><u>-</u><u> </u><u>3</u><u> </u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u>
<u>From</u><u> </u><u>(</u><u> </u><u>ii</u><u> </u><u>)</u><u> </u>
<u>2</u><u>x</u><u> </u><u>-</u><u> </u><u>3</u><u>y</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u>
<u>2</u><u>x</u><u> </u><u>=</u><u> </u><u>-</u><u>6</u><u> </u><u>+</u><u> </u><u>3</u><u>y</u><u> </u>
<u>
</u>
<u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u>.</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>
<u>Equating</u><u> </u><u>(</u><u> </u><u>iii</u><u> </u><u>)</u><u> </u><u>and</u><u> </u><u>(</u><u> </u><u>iv</u><u> </u><u>)</u>
<u>x</u><u> </u><u>=</u><u> </u><u>x</u><u> </u>
<u>
</u>
4y - 6 = -6 + 3y
4y - 3y = -6 + 6
y = 0
Putting value of y in ( iii )
x = 2y - 3
x = 2 ( 0 ) - 3
x = -3
Answer:
6.3/2.5=2.52
Step-by-step explanation:
Answer:
100:2 or 50:1
Step-by-step explanation:
Hope this helps!
=]
35 because if you half the amount of salads he's eaten (seeing as he eats one burger for every two salads) then the extra one is the first salad in the cycle.
If j is 52° and its a right angle, add 90° and 52°. Then subtract 180° from that answer. Because all triangles add up to 180°.