The mattmors comes out and in comes the cemestru
First, let's explain the variables. F means force, m means mass, and a means acceleration. F is measured in Newotns [N], mass is measured in kilograms [kg], and acceleration in measured in meters per squared second [m/s²].
Now let's mover on the first problem.
Given
m = 1000 kg
a = 3 m/s²
According to the second law of Newton, the force is equal to the acceleration multiplied by the mass.

The answer is 3000 N.
The second problem is smiliar.
Given
m = 70 kg
F = 250 N
We use the same formula from before, and use a bit of algebra to adapat it to our needs.

The answer is 24 1/7 s/m^2.
Answer:
RNA
Explanation:
Central dogma is the process of the formation of protein from the sequence of nucleotide on DNA. It consists of two further processes Transcription and translation.
During Transcription, the information from the DNA sequence is transcripted in a sequence of RNA, that is single stranded and contains Uracil instead of Thymine. During Translation, the information from the RNA sequence is translated into a sequence of amino-acid, and a protein.
Hope it helps!
Answer:
0.42mole
Explanation:
Given parameters:
Number of atoms of titanium = 2.5 x 10²³atoms
Unknown:
Number of moles = ?
Solution:
To solve this problem, we must understand that a mole of any substance contains the Avogadro's number of particles.
6.02 x 10²³ atoms makes up 1 mole of an atom
2.5 x 10²³ atoms will contain
= 0.42mole
This problem is providing us with the chemical equation for the decomposition of water to hydrogen and oxygen, the involved bond energies and asks for the total energy of the reaction as well as whether it is endothermic or exothermic. At the end, one comes to the conclusion that it is exothermic because the total energy is -425 kJ.
<h3>Bond energy:</h3>
In chemistry, bond energies are defined as the necessary energy to break a bond between two atoms. In this case, we see that water, H2O has two H-O bonds and hydrogen and oxygen have two H-H and one O=O bonds, respectively.
Thus, we write the following heat equation, which comprises the aforementioned bond energies and the stoichiometric coefficients in the reaction:

Hence, we plug in the given bond energies to obtain:

Where the negative suggests this is an exothermic reaction as it releases energy (negative enthalpy).
Learn more about bond energies: brainly.com/question/26141360