Answer:
<h3>D. c = fλ</h3>
Explanation:
c = fλ
where" c "is the speed of light ,
• "f" is the frequency of the electromagnetic waves,
• " λ" is its wavelength.
The expression for the Ka for the given acid is:
Ka = [H2P2O7^2-] [H3O+] /[H3P2O7^2-]
<span>Ka is the acid dissociation constant or the acidity constant. It is a measure of the acid strength when in solution. It is an equilibrium constant for the dissociation of the acid.</span>
Answer: here is a description of what they look like since I cannot see the diagram.
Mitochondria- wavy line
Ribosomes- little dots
Chromosome- X
Nucleus- Circle with bite taken out of it
Endoplasm- Bubble
Nuclear membrane- Outer layer/bubble
Golgi-wavy circle thing
Vacuole- Bigger circle (but not nucleus)
Cytoplasm- its the jelly on the inside
Cell wall- only in plant cells, looks like a box
Cell membrane- The outmost part of the animal cell, the barrier.
I sure hope this helps!!!
First, we should get moles acetic acid = molarity * volume
=0.3 M * 0.5 L
= 0.15 mol
then, we should get moles acetate = molarity * volume
= 0.2 M * 0.5L
= 0.1 mol
then, we have to get moles of OH- which added:
moles OH- = molarity * volume
= 1 M * 0.02L
= 0.02 mol
when the reaction equation is:
CH3COOH + OH- → CH3COO- + H2O
moles acetic acid after adding OH- = (0.15-0.02)
= 0.13M
moles acetate after adding OH- = (0.1 + 0.02)
= 0.12 M
Total volume = 0.5 L + 0.02 L= 0.52 L
∴[acetic acid] = moles acetic acid after adding OH- / total volume
= 0.13mol / 0.52L
= 0.25 M
and [acetate ) = 0.12 mol / 0.52L
= 0.23 M
by using H-H equation we can get PH:
PH = Pka + ㏒[salt/acid]
when we have Ka = 1.8 x 10^-5
∴Pka = -㏒Ka
= -㏒ 1.8 x 10^-5
= 4.7
So by substitution:
∴ PH = 4.7 + ㏒[acetate/acetic acid]
= 4.7 + ㏒(0.23/0.25)
= 4.66