1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anit [1.1K]
2 years ago
5

Find the third order maclaurin polynomial. Use it to estimate the value of sqrt1.3

Mathematics
2 answers:
vodka [1.7K]2 years ago
6 0

\sqrt{1+3x}=1+\frac{3}{2} x-\frac{9}{8} x^{2} + \frac{81}{8}x^{3} is the maclaurin polynomial and estimate value of \sqrt{1.3} is 1.14. This can be obtained by using the formula to find the maclaurin polynomial.

<h3>Find the third order maclaurin polynomial:</h3>

Given the polynomial,

f(x)=\sqrt{1+3x}=(1+3x)^{\frac{1}{2} }

The formula to find the maclaurin polynomial,

f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3}

Next we have to find f'(x), f''(x) and f'''(x),

  • f'(x) = \frac{3}{2}(1+3x)^{-\frac{1}{2} }
  • f''(x) =-\frac{9}{4}(1+3x)^{-\frac{3}{2} }
  • f'''(x) = \frac{81}{8}(1+3x)^{-\frac{5}{2} }

By putting x = 0 , we get,

  • f(0)=(1+3(0))^{\frac{1}{2} }=1
  • f'(0) = \frac{3}{2}(1+3(0))^{-\frac{1}{2} }=\frac{3}{2}
  • f''(0) =-\frac{9}{4}(1+3(0))^{-\frac{3}{2} }=-\frac{9}{4}
  • f'''(0) = \frac{81}{8}(1+3(0))^{-\frac{5}{2} }=\frac{81}{8}

Therefore the maclaurin polynomial by using the formula will be,

\sqrt{1+3x}=f(0)+\frac{f'(0)}{1!}x+\frac{f''(0)}{2!}x^{2} + \frac{f'''(0)}{3!}x^{3}

\sqrt{1+3x}=1+\frac{3}{2} x-\frac{9}{8} x^{2} + \frac{81}{8}x^{3}

To find the value of \sqrt{1.3}  we can use the maclaurin polynomial,

\sqrt{1.3} is  \sqrt{1+3x} with x = 1/10,

\sqrt{1+3(1/10)}=1+\frac{3}{2} (1/10)-\frac{9}{8} (1/10)^{2} + \frac{81}{8}(1/10)^{3}

\sqrt{1+3(1/10)}=\frac{18247}{16000} = 1.14

Hence \sqrt{1+3x}=1+\frac{3}{2} x-\frac{9}{8} x^{2} + \frac{81}{8}x^{3} is the maclaurin polynomial and estimate value of \sqrt{1.3} is 1.14.

Learn more about maclaurin polynomial here:

brainly.com/question/24188694

#SPJ1

Hoochie [10]2 years ago
3 0

You can use the well-known binomial series,

\displaystyle (1+x)^\alpha = \sum_{k=0}^\infty \binom \alpha k x^k

where

\dbinom \alpha k = \dfrac{\alpha(\alpha-1)(\alpha-2)\cdots(\alpha-(k-1))}{k!} \text{ and } \dbinom \alpha0 = 1

Let \alpha=\frac12 and replace x with 3x; then the series expansion is

\displaystyle (1+3x)^{1/2} = \sum_{k=0}^\infty \binom{\frac12}k (3x)^k

and the first 4 terms in the expansion are

\sqrt{1+3x} \approx 1 + \dfrac{\frac12}{1!}(3x) + \dfrac{\frac12\cdot\left(-\frac12\right)}{2!}(3x)^2 + \dfrac{\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac32\right)}{3!}(3x)^3

which simplify to

\sqrt{1+3x} \approx \boxed{1 + \dfrac32 x - \dfrac98 x^2 + \dfrac{27}{16} x^3}

You can also use the standard Maclaurin coefficient derivation by differentiating f a few times.

f(x) = (1+3x)^{1/2} \implies f(0) = 1

f'(x) = \dfrac32 (1+3x)^{-1/2} \implies f'(0) = \dfrac32

f''(x) = -\dfrac94 (1+3x)^{-3/2} \implies f''(0) = -\dfrac94

f'''(x) = \dfrac{81}8 (1+3x)^{-5/2} \implies f'''(0) = \dfrac{81}8

Then the 3rd order Maclaurin polynomial is the same as before,

\sqrt{1+3x} \approx f(0) + \dfrac{f'(0)}{1!} x + \dfrac{f''(0)}{2!} x^2 + \dfrac{f'''(0)}{3!} x^3 = 1 + \dfrac32 x - \dfrac98 x^2 + \dfrac{27}{16} x^3

Now,

\sqrt{1.3} = \sqrt{1+3x} \bigg|_{x=\frac1{10}} \\\\ ~~~~~~~~ \approx 1 + \dfrac32 \left(\dfrac1{10}\right) - \dfrac98 \left(\dfrac1{10}\right)^2 + \dfrac{27}{16} \left(\dfrac1{10}\right)^3 \\\\ ~~~~~~~~ = \dfrac{18,247}{16,000} \approx \boxed{1.14044}

Compare to the actual value which is closer to 1.14018.

You might be interested in
Write an expression that has four terms. your expression should have three different variables and a constant
Katyanochek1 [597]
A term is a number or variable in a math sentence (such as an expression or equation). 

Example:

a + 2b + c + 5

5 is a constant; a,b, c are all variables.
4 0
3 years ago
Qual é o coeficiente linear da funçao f(x) =2x - 1?
raketka [301]

Resposta: f ^ (- 1) (x) = (1/2) x-1/2

7 0
3 years ago
Write an equation of the line in point-slope form that passes through the given points.
Sonja [21]

Answer:

y = 0.625x+3.625

Step-by-step explanation:

7 0
3 years ago
29. 83 – 2 · 4 = <br> 30. 3 · 6 – 4 · 2 = <br> 31. 3( 6 – 4) · 2 =
tester [92]

1) 21.83

2)173.8

3)12

Hope this helps :)

4 0
3 years ago
The perimeter of a rectangle garden is 348 feet if the length of the garden is 93 feet what is the width?
Ber [7]
The width is 81 feet. 
93(2)+81(2)=348
3 0
3 years ago
Read 2 more answers
Other questions:
  • Solve the given inequality and graph the solution on a number line -x/2 + 3/2 &lt; 5/2
    11·1 answer
  • Will Mark as brainliest if correct
    9·1 answer
  • Mikkel pays a 4 percent state income tax on his earnings. If he earns $1,867, how much state income tax can he expect to pay?
    5·2 answers
  • 4 The number of laps Jessica runs around the track is proportional to the time she
    9·1 answer
  • what is an equation of the line that s perpendicullar to y-3=-4(x+2) and passes through the point (-5,7)
    15·1 answer
  • To the nearest​ millimeter, a cell phone is 123 mm long and 45 mm wide. What is the ratio of the width to the​ length?
    11·1 answer
  • 18. 50 - [7 + (32 - 2)]
    7·2 answers
  • Jeffrey earns a gross semimonthly salary of $2181.80.
    5·2 answers
  • Answer this Question please.
    15·1 answer
  • La distancia de la Tierra a Saturno es 5.95 x 108 y la distancia de la Tierra a Júpiter es 8.87 x 108. ¿Cuánto es la suma de las
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!