Answer:

Explanation:
Close to Earth's surface, the force of gravity that pulls an object towards the ground is
(2)
where
m is the mass of the object
g is the acceleration due to gravity, which is
close to Earth's surface
This is an approximation of the general formula of gravity valid only close to Earth's surface. The more general formula is
(1)
where
G is the gravitational constant
M is the Earth's mass
m is the object's mass
r is the distance of the object from Earth's center
At the Earth's surface,
r = R (Earth's radius), and by calling the following factor

we see that eq.(1) becomes eq.(2).
Whichever person or group can build something to protect the egg from cracking when it is dropped from a high spot without it breaking or cracking wins
Answer:
There are several modalities, or methods, of treatment: individual therapy, group therapy, couples therapy, and family therapy
Explanation:
Answer:
a. Fx = -8.089 N b. Fy = 3.525 N c. 8.824 N d. 336.45°
Explanation:
Since F₁ = 9.2 N and acts at 57° above the negative axis in the second quadrant, its x-component is -F₁cos57° and its y- component is F₁sin57°
Since F₁ = 5.2 N and acts at 53.7° below the negative axis in the third quadrant, its x-component is -F₂cos53.7° and its y- component is -F₂sin53.7°
Part A
What is the x component Fx of the resultant force?
The x component of the resultant force Fx = -F₁cos57° + -F₂cos53.7° = -9.2cos57° + (-5.2cos53.7°) = (-5.011 - 3.078) N = -8.089 N
Part B
What is the y component Fy of the resultant force?
The y component Fy of the resultant force = F₁sin57° + -(F₂sin53.7°) = 9.2sin57° - 5.2sin53.7° = (7.716 - 4.191) N = 3.525 N
Part C
What is the magnitude F of the resultant force?
The magnitude F of the resultant force = √(Fx² + Fy²)
F = √(-8.089² N + 3.525² N) = √65.432 + 12.426 = √77.858 = 8.824 N
Part D
What is the angle ? that the resultant force forms with the negative x axis?
The angle the resultant force makes with the negative x axis is given by
θ = tan⁻¹(Fy/Fx) = tan⁻¹(3.525/-8.089) = tan⁻¹-0.4358 = -23.55°.
To measure it from the negative x axis, we add 360. So, our angle = 360 -23.55 = 336.45°
<span>1. By Ilkka Cheema<span><span>2. </span>Newton’s 1st Law The first law of motion sates that an object will not change its speed or direction unless an unbalanced force (a force which is distant from the reference point) affects it. Another name for the first law of motion is the law of inertia. If balanced forces act on an object it doesn’t accelerate or change direction. This means it doesn’t change its velocity and it doesn’t have momentum.</span><span><span>3. </span>Examples of Newton’s 1st Law If you slide a hockey puck on ice, eventually it will stop, because of friction on the ice. It will also stop if it hits something, like a player’s stick or a goalpost. If you kicked a ball in space, it would keep going forever, because there is no gravity, friction or air resistance going against it. It will only stop going in one direction if it hits something like a meteorite or reaches the gravity field of another planet. If you are driving in your car at a very high speed and hit something, like a brick wall or a tree, the car will come to an instant stop, but you will keep moving forward. This is why cars have airbags, to protect you from smashing into the windscreen.</span><span><span>4. </span>Newton’s 2nd Law The second law of motion states that acceleration is produced when an unbalanced force acts on an object (mass). The more mass the object has the more net force has to be used to move it.</span><span><span>5. </span>Examples of Newton’s 2nd Law If you use the same force to push a truck and push a car, the car will have more acceleration than the truck, because the car has less mass. It is easier to push an empty shopping cart than a full one, because the full shopping cart has more mass than the empty one. This means that more force is required to push the full shopping cart.</span><span><span>6. </span>Newton’s 3rd Law The third law of motion sates that for every action there is a an equal and opposite reaction that acts with the same momentum and the opposite velocity.</span><span><span>7. </span>Examples of Newton’s 3rd Law When you jump off a small rowing boat into water, you will push yourself forward towards the water. The same force you used to push forward will make the boat move backwards. When air rushes out of a balloon, the opposite reaction is that the balloon flies up. When you dive off of a diving board, you push down on the springboard. The board springs back and forces you into the air.</span></span>