In order to calculate the amount of energy required, we must first check the latent heat of vaporization of water from literature. The latent heat of vaporization of any substance is the amount of energy required per unit mass to convert that substance from a solid to a liquid. For water this is 2,260 J/g. We now use the formula:
Energy = mass * latent heat
Q = 50 * 2,260
Q = 113,000 J
113,000 Joules of heat energy are required.
Answer:
44100 N
Explanation:
Each wall will have dimension of 4 m x 1.5 m
Whole force will act on central point of wall situated at a depth of 1.5 /2 = .75m
pressure at CM = h d g , h = .75 , d ( density of water = 10³ )
pressure at CM = .75 x 10³ x 9.8
= 7350 N / m²
Total force on each wall
= pressure x area
= 7350 x 4 x 1.5
= 44100 N Ans
b ) If h = 1.5 x 2 = 3
Pressure = hdg
1.5 x 10³ x 9.8
= 14700 N / m²
Force
= pressure x area
14700 x 3 x 4
= 176400 N
Which is 4 times 44100 N
So force will quadruple.
It is so because both area and height have become twice.
Answer:
Your correct answer is option C. Displacement is equal to the total distance traveled by an object in motion.
Explanation:
This is something that is definitely not a displacement.
Answer:
136 meters.
Explanation: If it can go 17 meters a second, then after 8 seconds, it will go 136 meters. Multiple 17 by 8 to get your answer.
Answer:
time rising = 34 / 9.8 = 3.47 sec
total time in air = 2 * 3.47 sec = 6.94 sec
(time rising must equal time falling)
R = 17 m/s * 6.94 s = 118 m
Can also use range formula
R = v^2 sin (2 theta) / g
tan theta = 34 / 17 = 2
theta = 63.4 deg
2 theta = 126.9 deg
sin 126.9 = .8
v^2 = 17^2 + 34^2 = 1445 m^2/s^2
R = 1445 * .8 / 9.8 = 118 m agreeing with answer found above