Answer:longitudinal waves
Explanation:
They are longitudinal waves
So this is easy to calculate when you split the velocity into x and y components. The x component is going to equal cos(53) * 290 and the y component is going to equal sin(53)*290.
The x location therefore is 290*cos(53)*35 = 6108.4m
The y location needs to factor in the downwards acceleration of gravity too, which is 9.81m/s^2. We need the equation dist. = V initial*time + 0.5*acceleration*time^2.
This gives us d=290*sin(53)*35 + (0.5*-9.81*35^2)=2097.5m
So your (x,y) coordinates equals (6108.4, 2097.5)
Answer:
1.67 m/s
Explanation:
Momentum is conserved.
Initial momentum = final momentum
(30 kg) (10 m/s) + (35 kg) (-10 m/s) = (30 kg) v + (35 kg) (0 m/s)
300 - 350 = 30v
v = -5/3 m/s
Linus will move at 1.67 m/s in the direction opposite that he started.
The initial horizontal velocity of the rock, in m/s is 21.241 m/s.
<h3>What is projectile?</h3>
When an object is thrown at an angle from the horizontal direction, the object is said to be in projectile motion. The object which follows the projectile motion.
Time taken by the stone to reach the ground is
t = √2h/g
t = √(2x 86)/9.81
t = 4.19s
The horizontal velocity is
V(x) = Horizontal distance traveled / Time taken t
Put the values, we get
V(x) = 89 m/4.19 s
V(x) = 21.241 m/s
Thus, the horizontal velocity is 21.241 m/s
Learn more about projectile.
brainly.com/question/11422992
#SPJ1
Yes
Explanation:
From the graph, we can deduce that the wavelength changes with the speed of the wave.
This is a simple linear graph. A linear graph has a steady gradient and it shows two variables that increases proportionately.
Using the graph, we can establish that as the wavelength of the wave increases the time taken for one wave to pass through increases.
The speed of a wave is given as:
V = fλ
f is the frequency of the wave i.e the number of waves that passes through a point per unit of time
λ is the wavelength of the wave
The vertical axis on the graph shows the time for 1 wave trip, this is the wave period, T
f = 
Therefore;
speed of the wave = 
This can be evaluated by solving slope of the graph and finding the inverse.
We can see that as the speed of the wave changes, the wavelength will change.
learn more:
Wavelength brainly.com/question/6352445
#learnwithBrainly