This happens mostly in the adipose and liver.
Chromatin is the threadlike form of genetic material in the nucleus.
(chromatin coils around histone proteins and form chromosomes when mitosis/meiosis are going to occur)
the thylakoid will have fewer hydrogen ions
Answer:
Mother- XXH
Father- XHY
Explanation:
The mother is a carrier for hemophilia and since the disease is sex linked and found on the X chromosome, only one of the alleles has that H allele attached to it. The father is male so he only has one X chromosome, which is why he is effected by the disease and not just a carrier like the mother.
Answer:
The correct answer is : A.
Explanation:
- This is because of the following reasons:
- Escherichia coli is a bacteria and hence is a prokaryote.
- The cloning of human (eukaryote) genes is done to obtain in-vitro protein expression which are to be used a pharmaceutical compounds.
- Although the phenomenon of Central Dogma takes place in both Prokaryotes and Eukaryotes, the mechanism is very different.
- Some of the differences includes:
- Eukaryotic genes contain certain non-protein encoding sequences called the Intron sequences which needs to be removed from the transcribed mature mRNA by Spliceosome. This phenomenon is absent in prokaryotes as they do not possess introns. Hence, proper processing of eukaryotic mRNA is not possible in prokaryotes.
- The mature eukaryotic mRNA has a 5' cap and 3' polyadenylated tail which is added by a capping enzyme and a poly-A polymerase enzyme to increase their stability. This will not be possible in a prokaryote as they lack these enzymes.
- The translation of membrane proteins and secretory proteins is carried on by the ribosomes bound to the endoplasmic reticulum. This structure is absent in prokaryotes, hence they will be unable to produce a proper polypeptide sequence.
- Finally, the eukaryotic proteins undergo various modifications after formation, like methylation, acetylation, etc. These reactions cannot be carried out in a prokaryote as they lack the respective enzymes.
- Hence, we see a properly folded functional eukaryotic protein cannot be produced in a prokaryote.