Answer:
A. Kinetic energies are equal.
Explanation:
The kinetic energy of the bodies will be equal since the mass and speed are the same.
Kinetic energy is the energy due to the motion of a body.
Mathematically;
K.E =
m v²
m is the mass
v is the speed
The kinetic energy is a scalar quantity with no regard for direction.
Answer:
Explanation:
You pull a sled exerting a 50 N force on it , sled also exerts a force on you . These forces are action and reaction force , as per third law of Newton . These two forces are equal and opposite . But they do not act on the same object so they do not cancel each other . They act on different objects , one on the sledge and the other on you . Due to force on sledge , sledge moves in the direction of force or towards you . You will start moving in opposite direction if frictional force of ground is nil or less .
I believe the answer is #4. u can always ask google if u believe that's the wrong answer :)
Answer:
a and b
Explanation:
Hydro static equilibrium holds a star steady and balanced. Whenever a star stops burning hydrogen in its center, there must be evolutionary improvements to maintain equilibrium for the star Of example, if a star's internal pressure and temperature fall, gravity will take over and force the star to contract and heat up, restoring stability. By contrast, if a star's internal pressure and temperature rises, the extra pressure causes the star to widen and cool, restoring balance.
so, according to above explanation options a and b both are true
a) A small increase in the star's internal pressure and temperature causes the star's outer layers to expand and cool.
b) A small decrease in the star's internal pressure and temperature causes the star's outer layers to contract and heat up.
I believe the correct answer from the choices listed above is the first option. Decreasing a telescope's eyepiece focal length will increase magnification. <span>The magnification of the </span>telescope<span> image is (</span>focal length<span> of the objective) divided by (</span>focal length <span>of the </span>eyepiece<span>). Hope this answers the question.</span>