When the force on some area is doubled and the area doesn't change,
then the pressure on that area has doubled.
Answers:
a) 
b) 
c) 
Explanation:
<h3>a) Mass of the continent</h3>
Density
is defined as a relation between mass
and volume
:
(1)
Where:
is the average density of the continent
is the mass of the continent
is the volume of the continent, which can be estimated is we assume it as a a slab of rock 5300 km on a side and 37 km deep:

Finding the mass:
(2)
(3)
(4) This is the mass of the continent
<h3>b) Kinetic energy of the continent</h3>
Kinetic energy
is given by the following equation:
(5)
Where:
is the mass of the continent
is the velocity of the continent
(6)
(7) This is the kinetic energy of the continent
<h3>c) Speed of the jogger</h3>
If we have a jogger with mass
and the same kinetic energy as that of the continent
, we can find its velocity by isolating
from (5):
(6)
Finally:
This is the speed of the jogger
Answer:
Explanation:
a )
momentum of baseball before collision
mass x velocity
= .145 x 30.5
= 4.4225 kg m /s
momentum of brick after collision
= 5.75 x 1.1
= 6.325 kg m/s
Applying conservation of momentum
4.4225 + 0 = .145 x v + 6.325 , v is velocity of baseball after collision.
v = - 13.12 m / s
b )
kinetic energy of baseball before collision = 1/2 mv²
= .5 x .145 x 30.5²
= 67.44 J
Total kinetic energy before collision = 67.44 J
c )
kinetic energy of baseball after collision = 1/2 x .145 x 13.12²
= 12.48 J .
kinetic energy of brick after collision
= .5 x 5.75 x 1.1²
= 3.48 J
Total kinetic energy after collision
= 15.96 J
Answer:
Explanation:
28 / 70 = 0.3857142... = 0.39 hr
280 / 100 = 2.8 hrs.
(100 - 0) / 10 = 10 m/s²
(60 - 20) / 4 = 10 m/s²

Maximum height
= (Usinα)^2/2g
(50*0.5)^2/20
25^2/20
625/20
=31.25metres
horizontal distance = Range= [U^2 * sin2α]/g
[50^2 * sin60]/10
2500 * 0.8660/10
2165/10=216.5metres