One that can help you is:
ΔT=<span>T<span>Final</span></span>−<span>T<span>Initia<span>l
That is of course adding both tmepratures. There is one more that is a lil bit more complex
</span></span></span><span><span>Tf</span>=<span>Ti</span>−Δ<span>H<span>rxn</span></span>∗<span>n<span>rxn</span></span>/(<span>C<span>p,water</span></span>∗<span>m<span>water</span></span>)
This one is taking into account that yu can find temperature and that there could be a change with a chemical reaction. Hope this helps</span>
V = t^2 - 9t + 18
position, s
s = t^3 /3 - 4.5t^2 +18t + C
t = 0, s = 1 => 1=C => s = t^3/3 -4.5t^2 + 18t + 1
Average velocity: distance / time
distance: t = 8 => s = 8^3 / 3 - 4.5 (8)^2 + 18(8) + 1 = 27.67 m
Average velocity = 27.67 / 8 = 3.46 m/s
t = 5 s
v = t^2 - 9t + 18 = 5^2 - 9(5) + 18 = -2 m/s
speed = |-2| m/s = 2 m/s
Moving right
V > 0 => t^2 - 9t + 18 > 0
(t - 6)(t - 3) > 0
=> t > 6 and t > 3 => t > 6 s => Interval (6,8)
=> t < 6 and t <3 => t <3 s => interval (0,3)
Going faster and slowing dowm
acceleration, a = v' = 2t - 9
a > 0 => 2t - 9 > 0 => 2t > 9 => t > 4.5 s
Then, going faster in the interval (4.5 , 8) and slowing down in (0, 4.5)
Most of the energy will be absorbed by the materials that make up the cars, causing them to deform. The energy will also be converted into sound energy, causing a loud bang upon collision. Also, some energy will be converted to thermal energy, which will cause the cars to heat up slightly.
A circuit is a closed circle that electricity can flow through.