The span of 3 vectors can have dimension at most 3, so 9 is certainly not correct.
Check whether the 3 vectors are linearly independent. If they are not, then there is some choice of scalars
(not all zero) such that
![c_1 (2,-1,1) + c_2 (3,1,1) + c_3 (1,2,0) = (0,0,0)](https://tex.z-dn.net/?f=c_1%20%282%2C-1%2C1%29%20%2B%20c_2%20%283%2C1%2C1%29%20%2B%20c_3%20%281%2C2%2C0%29%20%3D%20%280%2C0%2C0%29)
which leads to the system of linear equations,
![\begin{cases} 2c_1 + 3c_2 + c_3 = 0 \\ -c_1 + c_2 + 2c_3 = 0 \\ c_1 + c_2 = 0 \end{cases}](https://tex.z-dn.net/?f=%5Cbegin%7Bcases%7D%202c_1%20%2B%203c_2%20%2B%20c_3%20%3D%200%20%5C%5C%20-c_1%20%2B%20c_2%20%2B%202c_3%20%3D%200%20%5C%5C%20c_1%20%2B%20c_2%20%3D%200%20%5Cend%7Bcases%7D)
From the third equation, we have
, and substituting this into the second equation gives
![-c_1 + c_2 + 2c_3 = 2c_2 + 2c_3 = 0 \implies c_2 + c_3 = 0 \implies c_2 = -c_3](https://tex.z-dn.net/?f=-c_1%20%2B%20c_2%20%2B%202c_3%20%3D%202c_2%20%2B%202c_3%20%3D%200%20%5Cimplies%20c_2%20%2B%20c_3%20%3D%200%20%5Cimplies%20c_2%20%3D%20-c_3)
and in turn,
. Substituting these into the first equation gives
![2c_1 + 3c_2 + c_3 = 2c_3 - 3c_3 + c_3 = 0 \implies 0=0](https://tex.z-dn.net/?f=2c_1%20%2B%203c_2%20%2B%20c_3%20%3D%202c_3%20-%203c_3%20%2B%20c_3%20%3D%200%20%5Cimplies%200%3D0)
which tells us that any value of
will work. If
, then
and
. Therefore the 3 vectors are not linearly independent, so their span cannot have dimension 3.
Repeating the calculations above while taking only 2 of the given vectors at a time, we see that they are pairwise linearly independent, so the span of each pair has dimension 2. This means the span of all 3 vectors taken at once must be 2.