we know that the shaded side is 90 degrees and we are given 28 degrees
So we add 90+28 and we get 118
Since a triangle has 180 degrees, we subtract 180-118 to fins the missing angle measure
180-118=62
x=62
Your equation is 180=90+28+x
Step-by-step explanation:
12 + 16 ÷ 4 × 5 - 8
12 + 4 × 5 - 8
12 + 20 - 8
32 - 8
24
The rest of the question is the attached figure.
============================================
Δ AYW a right triangle at Y ⇒⇒⇒ ∴ WA² = AY² + YW²
And AY = YB ⇒⇒⇒ ∴ WA² = YB² + YW² → (1)
Δ BYW a right triangle at Y ⇒⇒⇒ ∴ WB² = BY² + YW² → (2)
From (1) , (2) ⇒⇒⇒ ∴ WA = WB →→ (3)
Δ CXW a right triangle at Y ⇒⇒⇒ ∴ WC² = CX² + XW²
And CX = XB ⇒⇒⇒ ∴ WC² = XB² + XW² → (4)
Δ BXW a right triangle at Y ⇒⇒⇒ ∴ WB² = XB² + XW² → (5)
From (4) , (5) ⇒⇒⇒ ∴ WC = WB →→ (6)
From (3) , (6)
WA = WB = WC
given ⇒⇒⇒ WA = 5x – 8 and WC = 3x + 2
∴ <span> 5x – 8 = 3x + 2</span>
Solve for x ⇒⇒⇒ ∴ x = 5
∴ WB = WA = WC = 3*5 + 2 = 17
The correct answer is option D. WB = 17
SRT = 20 => STR = 20.
Since STR and STU are supplementary angles, STU = 180 - STR = 180 - 20 = 160, means x = 40.