It take 0.54 hours to deposit 6.36g of copper
<h3>Further explanation</h3>
Faraday's Law I
"The mass of the substance formed at each electrode is proportional to the electric current flowing in the electrolysis
W = e.i.t / 96500

e = equivalent = Ar / valence
i = current, A
t = time, s
W=6.36 g
e = 63.5 : 2 =31.75
i = 10 A

Kind of this is probably wrong Mass weight of solid, volume weight of liquid?
Change of state occurs when heat is supplied or removed from a substance.
<h3>What is change of state?</h3>
Change of state refers to the changes that occur when a substance changes from one physical state to another due to changes in its temperature.
It is also known as phase change.
Phase Change can also be defined as change from one state to another without a change in chemical composition.
Some of the phase changes include:
- Freezing: when liquid changes to solid
- Condensation: when gas changes to liquid
- Melting: when solid changes to liquid
- Evaporation: when liquid changes to gas
The other terms associated with phase change include:
- Boiling point: the temperature at which vapor pressure becomes high that causes bubbles to form inside the body of the liquid
- Freezing point: temperature wherein a liquid solidifies
- Melting point: the temperature at which solid turns into a liquid.
Learn more about change of state at: brainly.com/question/18372554
Answer:
Dark matter makes up 85% of the mass of the universe. Dark matter is not directly observable because it doesn't interact with any electromagnetic wave. In the development of the universe, without dark matter, the universe will not function, move or rotate as it does now (this speculation led to the quest to find the anomaly of mass and energy in the known universe, eventually leading to the idealization of dark matter) and will not have enough gravitational force to hold it together. After the big bang,<em> the presence of dark matter and energy ensured that the newly formed universe didn't just float away, rather, it provided enough gravitational force to hold the universe while still allowing it to expand sufficiently</em>.
The development of the universe would have been different without the universe in the sense that the young universe won't have enough mass to hold it together, and the universe would have simply floated apart. The behavior of the universe would have been different from what we observe now, and some physical laws that applies now will not apply to the universe.