Answer:
the Germany scientist Alfred Wagner describes fold mountains that are found in The world are the same also geological similarity that occur between this continent are the same for example the rock that are found in brazil are the same of that of south africa.
NaBrO3 is the chemical formula for Sodium Bromate.
The pressure of a sample of a gas if the temperature is changed to 127 c while the volume remains constant is calculated using gay lussac law formula
that is P1/T1 = P2/V2
P1 = 100 torr
T1 = 27+273 = 300 k
T2 =127 +273 =400 k
P2=?
by making P2 the subject of the formula
P2=T2P1/T1
=100 x 400/300 = 133.3 torr
Answer:
4.549 kg.
Explanation:
- We can use the general law of ideal gas: <em>PV = nRT.</em>
where, P is the pressure of the gas in atm (P = 2 x 10⁴ kPa/101.325 = 197.4 atm).
V is the volume of the gas in L (V = 20.0 L).
n is the no. of moles of the gas in mol (n = ??? mol).
R is the general gas constant (R = 0.0821 L.atm/mol.K),
T is the temperature of the gas in K (T = 23° C + 273 = 296 K).
<em>∴ n = PV/RT =</em> (197.4 atm)(20.0 L)/(0.0821 L.atm/mol.K)(296 K) = <em>162.5 mol.</em>
- To find the mass of N₂ in the cylinder, we can use the relation:
<em>mass of N₂ = (no. of moles of N₂)*(molar mass of N₂) = </em>(162.5 mol)*(28.0 g/mol) = <em>4549 g = 4.549 kg.</em>
Answer:
Explanation:
To find the concentration; let's first compute the average density and the average atomic weight.
For the average density
; we have:

The average atomic weight is:

So; in terms of vanadium, the Concentration of iron is:

From a unit cell volume 

where;
= number of Avogadro constant.
SO; replacing
with
;
with
;
with
and
with 
Then:
![a^3 = \dfrac { n \Big (\dfrac{100}{[(100-C_v)/A_{Fe} ] + [C_v/A_v]} \Big) } {N_A\Big (\dfrac{100}{[(100-C_v)/\rho_{Fe} ] + [C_v/\rho_v]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%7D%7B%5B%28100-C_v%29%2FA_%7BFe%7D%20%5D%20%2B%20%5BC_v%2FA_v%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%5CBig%20%28%5Cdfrac%7B100%7D%7B%5B%28100-C_v%29%2F%5Crho_%7BFe%7D%20%5D%20%2B%20%5BC_v%2F%5Crho_v%5D%7D%20%5CBig%29%20%20%7D)
![a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100-C_v)A_{v} ] + [C_v/A_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100-C_v)/\rho_{v} ] + [C_v \rho_{Fe}]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20A_%7BFe%7D%20%5Ctimes%20A_v%7D%7B%5B%28100-C_v%29A_%7Bv%7D%20%5D%20%2B%20%5BC_v%2FA_Fe%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%20%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20%5Crho_%7BFe%7D%20%5Ctimes%20%20%5Crho_v%20%7D%7B%5B%28100-C_v%29%2F%5Crho_%7Bv%7D%20%5D%20%2B%20%5BC_v%20%5Crho_%7BFe%7D%5D%7D%20%5CBig%29%20%20%7D)
![a^3 = \dfrac { n \Big (\dfrac{100 \times A_{Fe} \times A_v}{[(100A_{v}-C_vA_{v}) ] + [C_vA_Fe]} \Big) } {N_A \Big (\dfrac{100 \times \rho_{Fe} \times \rho_v }{[(100\rho_{v} - C_v \rho_{v}) ] + [C_v \rho_{Fe}]} \Big) }](https://tex.z-dn.net/?f=a%5E3%20%3D%20%5Cdfrac%20%20%20%7B%20n%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20A_%7BFe%7D%20%5Ctimes%20A_v%7D%7B%5B%28100A_%7Bv%7D-C_vA_%7Bv%7D%29%20%5D%20%2B%20%5BC_vA_Fe%5D%7D%20%5CBig%29%20%7D%20%20%20%20%7BN_A%20%20%5CBig%20%28%5Cdfrac%7B100%20%5Ctimes%20%5Crho_%7BFe%7D%20%5Ctimes%20%20%5Crho_v%20%7D%7B%5B%28100%5Crho_%7Bv%7D%20-%20C_v%20%5Crho_%7Bv%7D%29%20%5D%20%2B%20%5BC_v%20%5Crho_%7BFe%7D%5D%7D%20%5CBig%29%20%20%7D)
Replacing the values; we have:



