To know the density you also need to know the volume of the rock.
1.Electrons can be transferred from one atom to another.
2.Electrons can be shared between neighbouring atoms.
3.Electrons can be shared with all atoms in a material.
Answer:
V2= 1.03L
Explanation:
Start off with what you are given.
V^1: 1.00L
T^1: 23°C
V^2?
T^2: 33°C
If you know your gas laws, you have to utilise a certain gas law called Charles' Law:
V^1/T^1 = V^2/T^2
Remember to convert Celsius values to Kelvin whenever you are dealing with gas problems. This can be done by adding 273 to whatever value in Celsius you have.
(23+273 = 296) (33+273 = 306)
Multiply crisscross
1.00/296= V^2/306
296V^2 = 306
Dividing both sides by 296 to isolate V2, we get
306/296 = 1.0337837837837837837837837837838
V2= 1.03L
Answer:
There are 12 atoms in the compound
Answer:
Option B. A
Explanation:
From the question given above, the following data were obtained:
C(s) + 2H₂ (g) —> CH₄ (g). ΔH = –74.9 kJ
From the reaction above, we can see that the enthalpy change (ΔH) is negative (i.e –74.9 KJ) which implies that the heat content of the reactants is greater than the heat content of the products. Thus, the reaction is exothermic reaction.
For an exothermic reaction, the energy profile diagram is drawn in such a way that the heat content of reactants is higher than the heat content of products because the enthalpy change
(ΔH) is always negative.
Thus, diagram A (i.e option B) gives the correct answer to the question.