D is halfway between A and B
so the coordinates of D are (2,2)
E is halfway between A and C so the coordinates of E are (-1,1)
now you need to find the gradient/slope of DE and BC using the formula:

<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>D</u><u>E</u><u>:</u><u> </u></h3>
SUB IN COORDINATES OF D AND E

therefore the gradient of DE is 1/3.
<h3>
<u>G</u><u>r</u><u>a</u><u>d</u><u>i</u><u>e</u><u>n</u><u>t</u><u> </u><u>o</u><u>f</u><u> </u><u>B</u><u>C</u><u>:</u></h3>
<em>S</em><em>U</em><em>B</em><em> </em><em>I</em><em>N</em><em> </em><em>C</em><em>O</em><em>O</em><em>R</em><em>D</em><em>I</em><em>N</em><em>A</em><em>T</em><em>E</em><em>S</em><em> </em><em>O</em><em>F</em><em> </em><em>B</em><em> </em><em>A</em><em>N</em><em>D</em><em> </em><em>C</em>
<em>
</em>
therefore the gradient of BC is -2/-6 which simplifies to 1/3.
<h3>
therefore, BC and DE are parallel as they both have a gradient/slope of 1/3 and parallel lines have the same gradient</h3>
Answer:
to find range of interquartile sets of data
you see 5 vertical lines 1 is start point 2 is start of 2nd quartile 3 is start of 3rd quartile and also represents the median. the 4th start of 4th quartile and 5th is very end point.
Therefore the interquartile is from start line 2 to start line 4
apply to each by if it says 10 and 34 then we show workjings 34-10 = 24 and that is the range once we deduct data from each other.
Therefore full range is start line 1 to end line 5
if this says 2 to 45 then full range is 45-2 = 43 and apply to each boxplot.
Step-by-step explanation:
To find the perimeter you need to add all 3 sides