Answer:
WINKEY + D. ...
WINKEY + SPACE. ...
SHIFT + Mouse Click on a taskbar button. ...
CTRL + SHIFT + Mouse Click on a taskbar button. ...
SHIFT + Right Mouse Click on a taskbar button. ...
SHIFT + Right Mouse Click on a grouped taskbar button. ...
CTRL + Mouse Click on a grouped taskbar button. ...
WINKEY + T.
ctrl + X = cut
ctrl + c = copy
make me brainliest
Answer: 4) 157
Step-by-step explanation:
We know that there is no association between the grade level and the andedness, then we should find that the ratio between left handeds and right handed is the same for both grades.
In 7-th grade we have:
Left handed : 11
Right handed: 72
The ratio is 11/72 = 0.14
Then, the ratio for the 8-th graders must be about the same:
Left handed: 24
Right handed: X
Ratio: 24/X
Let's start with the bigger option, X = 157.
24/157 = 0.15
Ok, we now see that with the bigger option we obtained almost the same ratio (if we use the smaller values for X, we will get a ratio bigger than 0.15, so 0.15 is the better aproximation that we can find to the 0.14 of the 7-th graders)
Then the correct option is 4) 157
Complete Question:
Jamie used the distributive property to find the product of s(t) and h(t). His work was marked incorrect. Identify Jamie's mistake. What advice would you give Jamie to avoid this mistake in the future?
s(t)•h(t)= (3x-4)(2x-8)
= 6x² - 24x -8x - 32
= 6x² - 32x - 32
Answer:
Jamie made a mistake in his second line (6x² - 24x -8x - 32), by wrongly multiplying the operation signs. The last term should be +32, not -32.
Advice: Jamie should take note of the rule that applies when multiplying signs.
Step-by-step Explanation::
To find out where exactly Jamie made mistake, let's find the product of the given functions, step by step:
s(t)•h(t)= (3x-4)(2x-8)
Using distributive property, do the following:


(this is where Jamie made mistake. -4 * -8 = +32. NOT -32.)
Add like terms

Jamie made a mistake in multiplying negative × negative. The last term in "6x² - 24x -8x - 32", should be +32. Negative × negative = +.
Therefore, it is advisable for Jamie to always take note of the rule that applies when multiplying signs.
Answer:
Area of the lawn = 62493π m^2
Step-by-step explanation:
Now that we’ve learned how to solve word problems involving the sum of consecutive integers, let’s narrow it down and this time, focus on word problems that only involve finding the sum of consecutive even integers.
But before we start delving into word problems, it’s important that we have a good understanding of what even integers, as well as consecutive even integers, are.
Even Integers
We know that even numbers are integers that can be divided exactly or evenly by 22. Thus, the general form of the even integer nn, is n = 2kn=2k, where kk is also an integer.
In other words, since even numbers are the multiples of 22, we can represent an even integer nn by 2k2k, where kk is also an integer. So if we have the even integers 1010 and 1616,