Answer:
this is because spreading it makes more sunlight hit the cloth which results in it drying faster
Mass = Density × Volume
= 30.0 mg / mL × 375 mL
= 11250 mg
= 11.25 g
∴ the total mass of insulin in the bottle is 11.25 g (11250 mg)
Answer:
See explanation
Explanation:
The molecular equation shows all the compounds involved in the reaction.
The molecular equation is as follows;
2NaF(aq) + Pb(NO3)2(aq) -------> PbF2(s) + 2NaNO3(aq)
The complete ionic equation shows all the ions involved in the reaction
The complete ionic equation;
2Na^+(aq) + 2F^-(aq) + Pb^2+(aq) + 2NO3^-(aq) -------->PbF(s) + 2Na^+(aq) +2NO3^-(aq)
The net Ionic equation shows the ions that actually participated in the reaction
The net ionic equation is;
2F^-(aq) + Pb^2+(aq)--------> PbF(s)
Calculate the mass of the solute <span>in the solution :
Molar mass KCl = </span><span>74.55 g/mol
m = Molarity * molar mass * volume
m = 0.9 * 74.55 * 3.5
m = 234.8325 g
</span><span>To prepare 0.9 M KCl solution, weigh 234.8325 g of salt in an analytical balance, dissolve in a beaker, shortly after transfer with the help of a funnel of transfer to a volumetric flask of 100 cm</span>³<span> and complete with water up to the mark, then cover the balloon and finally shake the solution to mix
hope this helps!</span>