Answer:
0.758 V.
Explanation:
Hello!
In this case, case when we include the effect of concentration on an electrochemical cell, we need to consider the Nerst equation at 25 °C:

Whereas n stands for the number of moles of transferred electrons and Q the reaction quotient relating the concentration of the oxidized species over the concentration of the reduced species. In such a way, we can write the undergoing half-reactions in the cell, considering the iron's one is reversed because it has the most positive standard potential so it tends to reduction:

It means that the concentration of the oxidized species is 0.002 M (that of nickel), that of the reduced species is 0.40 M and there are two moles of transferred electrons; therefore, the generated potential turns out:

Beat regards!
Answer: For every one mole of Ca used in this reaction, two mols of H20 are used, one mole of Ca(OH)2 is formed, and one mole of H2 is formed.
Explanation: Once the equation is balanced, you can get the ratio from the coefficients. If you are looking at the ratio of Ca to H2O, the ratio is 1:2; Ca to H2 1:1.
Instruments
The specific type of instruments depends on the type of laboratory that you're working in: some labs for example use electron microscopes, others use mass spectrophotometers, others use multiplex biochemical analyzers, etc. But very broadly, the specialized tools we use in the laboratory are usually referred to as "instruments"
Answer:
This is all true if the atom has to be neutral.
Also what does V mean?
Helium: one shell with 2 neutrons and 2 protons in the center, with 2 electrons in the first shell.
Lithium: two shells with 4 neutrons and 3 protons in the center, with 2 electrons in the first shell, and 1 electron in the second shell.
Nitrogen: two shells with 7 neutrons and 7 protons in the center, with 2 electrons in the first shell, and 5 electrons in the second shell.
Flourine: two shells with 9 protons and 10 neutrons in the center, with 2 electrons in the first shell, and 7 electrons in the second shell.
Neon: two shells with 10 neutrons and 10 protons in the center, with 2 electrons in the first shell, and 8 electrons in the second shell.
Boron: two shells with 6 neutrons and 5 protons in the center, with 2 electrons in the first shell, and 3 electrons in the second shell.
To solve this we assume
that the gas is an ideal gas. Then, we can use the ideal gas equation which is
expressed as PV = nRT. At a constant temperature and number of moles of the gas
the product of PV is equal to some constant. At another set of condition of
temperature, the constant is still the same. Calculations are as follows:
P1V1 =P2V2
P2 = P1 x V1 / V2
P2 = 2.0 x 1.5 / 3
<span>P2 = 1 atm</span>