1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
DerKrebs [107]
2 years ago
7

What is the length of the altitude of the equilateral triangle below?​

Mathematics
1 answer:
ElenaW [278]2 years ago
5 0

Answer:

A

Step-by-step explanation:

the height a creates with half of the baseline (5) and a leg (10) a right-angled triangle, and we can use Pythagoras to calculate a.

c² = a² + b²

c being the Hypotenuse (the side opposite of the 90° angle, so in our case the 10 side).

10² = a² + 5²

100 = a² + 25

75 = a²

a = sqrt(75) = sqrt(3×25) = 5×sqrt(3)

You might be interested in
Power Series Differential equation
KatRina [158]
The next step is to solve the recurrence, but let's back up a bit. You should have found that the ODE in terms of the power series expansion for y

\displaystyle\sum_{n\ge2}\bigg((n-3)(n-2)a_n+(n+3)(n+2)a_{n+3}\bigg)x^{n+1}+2a_2+(6a_0-6a_3)x+(6a_1-12a_4)x^2=0

which indeed gives the recurrence you found,

a_{n+3}=-\dfrac{n-3}{n+3}a_n

but in order to get anywhere with this, you need at least three initial conditions. The constant term tells you that a_2=0, and substituting this into the recurrence, you find that a_2=a_5=a_8=\cdots=a_{3k-1}=0 for all k\ge1.

Next, the linear term tells you that 6a_0+6a_3=0, or a_3=a_0.

Now, if a_0 is the first term in the sequence, then by the recurrence you have

a_3=a_0
a_6=-\dfrac{3-3}{3+3}a_3=0
a_9=-\dfrac{6-3}{6+3}a_6=0

and so on, such that a_{3k}=0 for all k\ge2.

Finally, the quadratic term gives 6a_1-12a_4=0, or a_4=\dfrac12a_1. Then by the recurrence,

a_4=\dfrac12a_1
a_7=-\dfrac{4-3}{4+3}a_4=\dfrac{(-1)^1}2\dfrac17a_1
a_{10}=-\dfrac{7-3}{7+3}a_7=\dfrac{(-1)^2}2\dfrac4{10\times7}a_1
a_{13}=-\dfrac{10-3}{10+3}a_{10}=\dfrac{(-1)^3}2\dfrac{7\times4}{13\times10\times7}a_1

and so on, such that

a_{3k-2}=\dfrac{a_1}2\displaystyle\prod_{i=1}^{k-2}(-1)^{2i-1}\frac{3i-2}{3i+4}

for all k\ge2.

Now, the solution was proposed to be

y=\displaystyle\sum_{n\ge0}a_nx^n

so the general solution would be

y=a_0+a_1x+a_2x^2+a_3x^3+a_4x^4+a_5x^5+a_6x^6+\cdots
y=a_0(1+x^3)+a_1\left(x+\dfrac12x^4-\dfrac1{14}x^7+\cdots\right)
y=a_0(1+x^3)+a_1\displaystyle\left(x+\sum_{n=2}^\infty\left(\prod_{i=1}^{n-2}(-1)^{2i-1}\frac{3i-2}{3i+4}\right)x^{3n-2}\right)
4 0
3 years ago
Nisha and Lee Nguyen are purchasing a new home with monthly mortgage payments of $740.16. Their annual property taxes are estima
Setler79 [48]

Answer:

6787.8

explanation:

740.16 + 3047.16 + 2149.76 + 850.72 = 6787.8

i dont actually know if this is it so sorry if not

5 0
2 years ago
Given g (c)=9 (c )^2+7=?
AVprozaik [17]
C^2+7 would equal 88. the first equation states that C=9, so you can just plug in 9 for C
3 0
3 years ago
1.7% as a fraction in simplest form
Sophie [7]

Answer:

\sf1.7\% \\  =  \sf \frac{1.7}{100}  \\  =   \boxed{ \bold{ \red{\frac{17}{1000} }}}

Hope it helps!!

4 0
2 years ago
What is the radical form of each of the given expressions? Drag the answer into the box to match each expression.
postnew [5]

4 ^ (1/7 ) is the 7th root of 4 or the 3rd box

4 ^ (7/2) is 4 to the 7th power then the square root  or the 2nd box

7 ^ (1/4) is the 4th root of 7 or the 4th box

7 ^ (1/2) is the square root of 7 or the  6th box

4 0
3 years ago
Read 2 more answers
Other questions:
  • What is the constant of proportionality between y and x in the graph?- Answer with a simplified improper fraction.
    5·1 answer
  • According to a random sample taken at 12​ A.M., body temperatures of healthy adults have a​ bell-shaped distribution with a mean
    14·1 answer
  • Which graphs show a proportional relationship?<br> Graph 1<br> Graph 2
    9·1 answer
  • BRAINLIEST + 25 POINTS! ASAP
    7·1 answer
  • A used car dealer sells SUVs and cars. Of all the vehicles, 70% are cars. Of all the vehicles, 20% are red cars. What is the pro
    14·2 answers
  • Help pls asappp!!!no rocky!
    15·1 answer
  • The difference of sixteen and four is greater than ten
    5·1 answer
  • What is the slope...​
    6·2 answers
  • There are
    6·1 answer
  • What does the value 40 in the equation y=7.5+40 represent in the context of this situation?
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!