1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
MAXImum [283]
2 years ago
12

We know that a triangle with side lengths , , and is a right triangle. Using those side lengths, find the missing triples and x-

values. Write the triples in parentheses, without spaces between the numbers, and with a comma between numbers. Write the triples in order from least to greatest. Type the correct answer in each box.
Mathematics
1 answer:
Anit [1.1K]2 years ago
6 0

The completed table for the Pythagorean triples are:

x \text{ value } \text{   Pythagorean triple}\\\text{ } \text{ } \text{ } 3 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (6,8,10)\\\text{ } \text{ } \text{ } 4 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (8,15,17)

  \text{ } \text{ } \text{ } 5 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }  (10,24,26)\\\text{ } \text{ } \text{ } 6 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (12,35,37).

A trio of positive numbers known as a Pythagorean triple fits into the Pythagoras theorem's formula, which is written as a² + b² = c², where a, b, and c are all positive integers. Here, "a" and "b" make up the other two legs of the right-angled triangle, and "c" serves as the triangle's "hypotenuse," or longest side. In terms of the Pythagorean triples (a, b, c).

In the question, we are given that a triangle with side lengths x² - 1, 2x, x² + 1 is a right triangle, and are asked to fill in the missing table:

x \text{ value } \text{   Pythagorean triple}\\\text{ } \text{ } \text{ } 3 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \underline{\text{ }}\\\text{ } \text{ } \text{ } \underline{\text{ }} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (8,15,17)\\

  \text{ } \text{ } \text{ } 5 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \underline{\text{ }}\\\text{ } \text{ } \text{ } \underline{\text{ }} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (12,35,37).

Taking x as 3, and putting in the sides, we get:

x² + 1 = 3² + 1 = 10.

2x = 2*3 = 6.

x² - 1 = 3² - 1 = 8.

Thus, the triplet is 6,8,10.

For the triplet 8,15,17, we get the x value as:

2x = 8,

or, x = 8/2 = 4.

Thus, the x-value for the triplet (8,15,17) is 4.

Taking x as 5, and putting in the sides, we get:

x² + 1 = 5² + 1 = 26.

2x = 2*5 = 10.

x² - 1 = 5² - 1 = 24.

Thus, the triplet is 10,24,26.

For the triplet 12,35,37, we get the x value as:

2x = 12,

or, x = 12/2 = 6.

Thus, the x-value for the triplet (12,35,37) is 6.

Thus, the completed table for the Pythagorean triples are:

x \text{ value } \text{   Pythagorean triple}\\\text{ } \text{ } \text{ } 3 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (6,8,10)\\\text{ } \text{ } \text{ } 4 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (8,15,17)

  \text{ } \text{ } \text{ } 5 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ }  (10,24,26)\\\text{ } \text{ } \text{ } 6 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (12,35,37).

Learn more about the Pythagorean triplets at

brainly.com/question/24211694

#SPJ4

The provided question is incomplete. The complete question is:

"We know that a triangle with side lengths x² - 1,2x and x² + 1 is a right triangle. Using those side lengths, find the missing triples and x-values.

Write the triples in parentheses, without spaces between the numbers, and with a comma between numbers. Write the triples in order from least to greatest.

Type the correct answer in each box.

x \text{ value } \text{   Pythagorean triple}\\\text{ } \text{ } \text{ } 3 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \underline{\text{ }}\\\text{ } \text{ } \text{ } \underline{\text{ }} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (8,15,17)\\

  \text{ } \text{ } \text{ } 5 \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \underline{\text{ }}\\\text{ } \text{ } \text{ } \underline{\text{ }} \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } \text{ } (12,35,37).

You might be interested in
Free to whoever gets it​
liraira [26]

LolAnswer:

Step-by-step explanation:

3 0
3 years ago
Read 2 more answers
I need help on how to set this problem up and also how to solve it.
balu736 [363]

Answer:

It is the lenghth of awad because tall and skinny

4 0
3 years ago
Read 2 more answers
Use the Polynomial Identity below to help you create a list of 10 Pythagorean Triples:
Stolb23 [73]

Answer:

(3,4,5)

(6,8,10)

(5,12,13)

(8,15,17)

(12,16,20)

(7,24,25)

(10,24,26)

(20,21,29)

(16,30,34)

(9,40,41)

Just choose 2 numbers from {1,2,3,4,5,6,7,8,...} and make sure the one you input for x is larger.

Post the three in the comments and I will check them for you.

Step-by-step explanation:

We need to choose 2 positive integers for x and y where x>y.

Positive integers are {1,2,3,4,5,6,7,.....}.

I'm going to start with (x,y)=(2,1).

x=2 and y=1.

(2^2+1^2)^2=(2^2-1^2)^2+(2\cdot2\cdot1)^2

(4+1)^2=(4-1)^2+(4)^2

(5)^2=(3)^2+(4)^2

So one Pythagorean Triple is (3,4,5).

I'm going to choose (x,y)=(3,1).

x=3 and y=1.

(3^2+1^2)^2=(3^2-1^2)^2+(2\cdot3\cdot1)^2

(9+1)^2=(9-1)^2+(6)^2

(10)^2=(8)^2+(6)^2

So another Pythagorean Triple is (6,8,10).

I'm going to choose (x,y)=(3,2).

x=3 and y=2.

(3^2+2^2)^2=(3^2-2^2)^2+(2\cdot3\cdot2)^2

(9+4)^2=(9-4)^2+(12)^2

(13)^2=(5)^2+(12)^2

So another is (5,12,13).

I'm going to choose (x,y)=(4,1).

(4^2+1^2)^2=(4^2-1^2)^2+(2\cdot4\cdot1)^2

(16+1)^2=(16-1)^2+(8)^2

(17)^2=(15)^2+(8)^2

Another is (8,15,17).

I'm going to choose (x,y)=(4,2).

(4^2+2^2)^2=(4^2-2^2)^2+(2\cdot4\cdot2)^2

(16+4)^2=(16-4)^2+(16)^2

(20)^2=(12)^2+(16)^2

We have another which is (12,16,20).

I'm going to choose (x,y)=(4,3).

(4^2+3^2)^2=(4^2-3^2)^2+(2\cdot4\cdot3)^2

(16+9)^2=(16-9)^2+(24)^2

(25)^2=(7)^2+(24)^2

We have another is (7,24,25).

You are just choosing numbers from the positive integer set {1,2,3,4,... } and making sure the number you plug in for x is higher than the number for y.

I will do one more.

Let's choose (x,y)=(5,1).

(5^2+1^2)^2=(5^2-1^2)^2+(2\cdot5\cdot1)^2

(25+1)^2=(25-1)^2+(10)^2

(26)^2=(24)^2+(10)^2

So (10,24,26) is another.

Let (x,y)=(5,2).

(5^2+2^2)^2=(5^2-2^2)^2+(2\cdot5\cdot2)^2

(25+4)^2=(25-4)^2+(20)^2

(29)^2=(21)^2+(20)^2

So another Pythagorean Triple is (20,21,29).

Choose (x,y)=(5,3).

(5^2+3^2)^2=(5^2-3^2)^2+(2\cdot5\cdot3)^2

(25+9)^2=(25-9)^2+(30)^2

(34)^2=(16)^2+(30)^2

Another Pythagorean Triple is (16,30,34).

Let (x,y)=(5,4)

(5^2+4^2)^2=(5^2-4^2)^2+(2\cdot5\cdot4)^2

(25+16)^2=(25-16)^2+(40)^2

(41)^2=(9)^2+(40)^2

Another is (9,40,41).

5 0
3 years ago
Which equation represent a relationship where y is a nonlinear function of x? Select all that apply
irina [24]

the question is a beat confusing please make it simplify

8 0
3 years ago
Find the solution of the given initial value problems in explicit form. Determine the interval where the solutions are defined.
natali 33 [55]

Answer:

The solution of the given initial value problems in explicit form is y=x-x^2-2  and the solutions are defined for all real numbers.

Step-by-step explanation:

The given differential equation is

y'=1-2x

It can be written as

\frac{dy}{dx}=1-2x

Use variable separable method to solve this differential equation.

dy=(1-2x)dx

Integrate both the sides.

\int dy=\int (1-2x)dx

y=x-2(\frac{x^2}{2})+C                  [\because \int x^n=\frac{x^{n+1}}{n+1}]

y=x-x^2+C              ... (1)

It is given that y(1) = -2. Substitute x=1 and y=-2 to find the value of C.

-2=1-(1)^2+C

-2=1-1+C

-2=C

The value of C is -2. Substitute C=-2 in equation (1).

y=x-x^2-2

Therefore the solution of the given initial value problems in explicit form is y=x-x^2-2 .

The solution is quadratic function, so it is defined for all real values.

Therefore the solutions are defined for all real numbers.

4 0
3 years ago
Other questions:
  • A satilitle makes 4 revolutions in one day. How many revolutions would it make in 6 1/2 days
    13·1 answer
  • Choose Yes or No to tell if the fraction 5/8 will make each equation true.
    14·1 answer
  • Do those two problems have the same answer?
    10·1 answer
  • What is the sum of<br> -4 + 4b + 4 =
    5·2 answers
  • Which values of P and Q result in an equation with exactly one solution?
    8·2 answers
  • Hey <br> Please someone help me!!!!!<br> Asap
    5·1 answer
  • Two possible solutions of √11-2x=√x^2+4x+4 are –7 and 1. Which statement is true? A) Only x = –7 is an extraneous solution.
    5·2 answers
  • 2y + 12 = -3x<br><br> solve pls i have more I WILL GIVE EXTRA POINTS!!!!!!!!!!<br> 20+
    7·1 answer
  • I WILL GIVE CROWN JUST NEED HELP ASAP
    5·2 answers
  • Solve using Elimination<br><br> 3x+y=-9<br> y=5x+7
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!