Answer:the awnser is A i beleive not 100% sure
Step-by-step explanation:
<h3>
Answer: Point E is located at (2, 3)</h3>
====================================
Explanation:
The sequence PQRST has T as the last letter.
The sequence ABCDE has E as the last letter
The two letters T and E pair up or they correspond. So T will rotate to land on point E. Or T will rotate to point E's location.
Point T is at location (-3,2). So x = -3 and y = 2.
-------
Use the rule
(x,y) ---> (y, -x)
which is the rule we use when we rotate any point 90 degrees clockwise around the origin. We swap the x and y coordinates, then change the sign of the second coordinate (after the swap happens).
This means,
(-3, 2) ----> (2, -(-3)) = (2, 3)
or simply
(-3, 2) ---> (2, 3)
95% of red lights last between 2.5 and 3.5 minutes.
<u>Step-by-step explanation:</u>
In this case,
- The mean M is 3 and
- The standard deviation SD is given as 0.25
Assume the bell shaped graph of normal distribution,
The center of the graph is mean which is 3 minutes.
We move one space to the right side of mean ⇒ M + SD
⇒ 3+0.25 = 3.25 minutes.
Again we move one more space to the right of mean ⇒ M + 2SD
⇒ 3 + (0.25×2) = 3.5 minutes.
Similarly,
Move one space to the left side of mean ⇒ M - SD
⇒ 3-0.25 = 2.75 minutes.
Again we move one more space to the left of mean ⇒ M - 2SD
⇒ 3 - (0.25×2) =2.5 minutes.
The questions asks to approximately what percent of red lights last between 2.5 and 3.5 minutes.
Notice 2.5 and 3.5 fall within 2 standard deviations, and that 95% of the data is within 2 standard deviations. (Refer to bell-shaped graph)
Therefore, the percent of red lights that last between 2.5 and 3.5 minutes is 95%
Answer:
Anything in the form x = pi+k*pi, for any integer k
These are not removable discontinuities.
============================================================
Explanation:
Recall that tan(x) = sin(x)/cos(x).
The discontinuities occur whenever cos(x) is equal to zero.
Solving cos(x) = 0 will yield the locations when we have discontinuities.
This all applies to tan(x), but we want to work with tan(x/2) instead.
Simply replace x with x/2 and solve for x like so
cos(x/2) = 0
x/2 = arccos(0)
x/2 = (pi/2) + 2pi*k or x/2 = (-pi/2) + 2pi*k
x = pi + 4pi*k or x = -pi + 4pi*k
Where k is any integer.
If we make a table of some example k values, then we'll find that we could get the following outputs:
- x = -3pi
- x = -pi
- x = pi
- x = 3pi
- x = 5pi
and so on. These are the odd multiples of pi.
So we can effectively condense those x equations into the single equation x = pi+k*pi
That equation is the same as x = (k+1)pi
The graph is below. It shows we have jump discontinuities. These are <u>not</u> removable discontinuities (since we're not removing a single point).
Answer:
thanks!
Step-by-step explanation: