1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
madam [21]
2 years ago
12

Can someone help me with all these questions?

Mathematics
1 answer:
Sphinxa [80]2 years ago
6 0

1a. 98 cm ^2

1b. 76. 98 cm^2

2a. 42cm

2b. 7. 19 cm

3. a + b/2 (h)

4. 24 cm ^2

5. πr + 2r

6. 13. 2m

7. 45cm^2

8. 252 cm ^ 2

9. 450 cm^ 2

<h3>How to solve the area</h3>

1a. The shape given is a rectangle

The formula for area of a rectangle is given as;

Area = length × width

Area = 7 × 14

Area = 98 cm ^2

1b The shape given is a semi circle

The formula for area of a semicircle is given as;

Area = 1/2 π r^2

radius = diameter/2 = 14/2 = 7cm

Area = 1/2 × 3.142 × 7 × 7

Area = 76. 98 cm^2

2a. The shape given is a rectangle

The formula for perimeter of a rectangle is given as;

Perimeter = 2 ( length + width)

Perimeter = 2 ( 14 + 7) = 2( 21)

Perimeter = 42cm

2b. The shape is a semicircle

Perimeter = π r + 2r

r= 1.4cm; diameter divided by 2

Perimeter = 3. 142(1.4) + 2(1.4)

Perimeter = 7. 19 cm

3. The formula for area of a trapezium is given as

Area = a + b/2 (h)

4. The area of the trapezium is given as;

Area = 9 + 7/2 (3)

Area = 16/2 (3)

Area = 8 × 3

Area = 24 cm ^2

5. Area of semicircle = 1/2 πr^2

Perimeter of a semicircle = πr + 2r

6. From the information given, we have the following

Area = 480 m^2

a = 20m

b = unknown

h = 13. 2m

Area = a+b/2 (h)

Substitute the values

480 = 20+b/2 (13. 2)

480 = 10+ b (13. 2)

480/13. 2 = 10 + b

10+ b = 480/ 13. 2

10 + b = 36. 36

b = 36.36 - 10

b = 26. 36m

7. The formula for area of a rhombus is given as

Area = p × q/2

Where p and q are the diagonals

Area = 7. 5 × 12/2

Area = 90/2

Area = 45cm^2

8. The formula for area for a quadrilateral is given as;

Area of quadrilateral = (½) × diagonal length × sum of the length of the perpendiculars

sum of the length = 13 + 8 = 21cm

Diagonal A= 24cm

Area = 1/2 × 24 × 21

Area = 252 cm ^ 2

9. Area of a pentagonal park = 1/2 × sum of parallel sides × height

Sum of parallel sides = 15 + 15 = 30 cm

height = 30cm

Area = 1/2 × 30 × 30

Area = 450 cm^ 2

Learn more about area here:

brainly.com/question/14137384

#SPJ1

You might be interested in
You are riding a roller coaster when a shoe falls off your foot. The function y=180−16t2 represents the height y (in feet) of th
Troyanec [42]
3

When you plug in 36 for y, you get 3
3 0
3 years ago
Solve: 49x2 − 60 = 0
givi [52]

Answer:

C. x = −1.11 and x = 1.11

Step-by-step explanation:

1. I assume you meant 49x^2-60, not 49x2-60.

2. Plug the numbers into the quadratic formula and simplify.

a=49 b=0 c=-60

3 0
4 years ago
Please help ♡♡♡♡♡♡♡♡♡​
zhannawk [14.2K]

Answer:

71°

Step-by-step explanation:

BDH is a triangle (as seen on figure)

<BDH + <DBH = <DHE ( Sum of two interior angles of a triangle is equal to the opposite exterior angle)

40° + 31° = X

X = 71°

7 0
3 years ago
Evaluate the definite integral from pi/3 to pi/2 of (x+cosx) dx
Vadim26 [7]

Answer:

\displaystyle \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {(x + \cos x)} \, dx = \frac{5 \pi ^2}{72} + 1 - \frac{\sqrt{3}}{2}

General Formulas and Concepts:

<u>Calculus</u>

Integration

  • Integrals

Integration Rule [Reverse Power Rule]:                                                           \displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C

Integration Rule [Fundamental Theorem of Calculus 1]:                                 \displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)

Integration Property [Addition/Subtraction]:                                                   \displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify.</em>

\displaystyle \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {(x + \cos x)} \, dx

<u>Step 2: Integrate</u>

  1. [Integral] Rewrite [Integration Property - Addition/Subtraction]:           \displaystyle \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {(x + \cos x)} \, dx = \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {x} \, dx + \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {\cos x} \, dx
  2. [Left Integral] Integration Rule [Reverse Power Rule]:                           \displaystyle \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {(x + \cos x)} \, dx = \frac{x^2}{2} \bigg| \limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} + \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {\cos x} \, dx
  3. [Right Integral] Trigonometric Integration:                                             \displaystyle \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {(x + \cos x)} \, dx = \frac{x^2}{2} \bigg| \limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} + \sin x \bigg| \limits^{\frac{\pi}{2}}_{\frac{\pi}{3}}
  4. Integration Rule [Fundamental Theorem of Calculus 1]:                         \displaystyle \int\limits^{\frac{\pi}{2}}_{\frac{\pi}{3}} {(x + \cos x)} \, dx = \frac{5 \pi ^2}{72} + \bigg( 1 - \frac{\sqrt{3}}{2} \bigg)

Topic: AP Calculus AB/BC (Calculus I/I + II)

Unit: Integration

3 0
2 years ago
Read 2 more answers
Find the smallest positive integer k such that 3240/k is a square number
sashaice [31]

Answer:

10

Step-by-step explanation:

First, factorize the number 3,240:

3,240=2\cdot 1,620=2\cdot 2\cdot 810=2\cdot 2\cdot 2\cdot 405=2\cdot 2\cdot 2\cdot 2\cdot 5\cdot 81=2^3\cdot 5\cdot 9^2

So,

3,240=2^2 \cdot 2\cdot 5\cdot 9^2=18^2\cdot 10

Now consider the fraction

\dfrac{3,240}{k}=\dfrac{18^2\cdot 10}{k}

If k = 10, then

\dfrac{3,240}{k}=\dfrac{18^2\cdot 10}{10}=18^2

is a square number.

For all k < 10, the fraction tex]\dfrac{3,240}{k}[/tex] is not a square number (this follows from factorization).

Or you can simply check the values of the fraction for all k < 10:

  • k = 1, \dfrac{3,240}{1}=3,240 is not a square number;
  • k = 2, \dfrac{3,240}{2}=1,620 is not a square number;
  • k = 3, \dfrac{3,240}{3}=1,080 is not a square number;
  • k = 4, \dfrac{3,240}{4}=810 is not a square number;
  • k = 5, \dfrac{3,240}{5}=648 is not a square number;
  • k = 6, \dfrac{3,240}{6}=540 is not a square number;
  • k = 7, \dfrac{3,240}{7} is not a square number;
  • k = 8, \dfrac{3,240}{8}=405 is not a square number;
  • k = 9, \dfrac{3,240}{9}=360 is not a square number.
5 0
4 years ago
Other questions:
  • HURRY HELP ME PLZ
    10·2 answers
  • Please help not sure how to do this
    5·1 answer
  • I need help finding out what x is only using the sine and cosine rule.
    5·1 answer
  • The perimeter of a trapezoid is 39a-7. Three sides have the following lengths : 9a, 5a + 1 and 17a -6
    5·1 answer
  • Circle the digit in the ones place. Then write even or odd. 36 is?
    5·2 answers
  • ‍ ‍ Which expression shows the result of applying the distributive property to 14(−3n+32)14(−3n+32) ? ‍ ‍ ‍ ‍ ‍ ‍ ‍ ‍
    9·1 answer
  • HELP I NEED HELP ASAP
    14·1 answer
  • Find the measure of all the angles
    11·1 answer
  • Renata moved to her new home a few years ago. Back then, the young oak tree in her back yard was 190 centimeters tall. She measu
    11·1 answer
  • You spin the spinner once.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!