Answer:
Step-by-step explanation:
Prepare closing entireties for the concert hall bond fund
Answer:
Only d) is false.
Step-by-step explanation:
Let
be the characteristic polynomial of B.
a) We use the rank-nullity theorem. First, note that 0 is an eigenvalue of algebraic multiplicity 1. The null space of B is equal to the eigenspace generated by 0. The dimension of this space is the geometric multiplicity of 0, which can't exceed the algebraic multiplicity. Then Nul(B)≤1. It can't happen that Nul(B)=0, because eigenspaces have positive dimension, therfore Nul(B)=1 and by the rank-nullity theorem, rank(B)=7-nul(B)=6 (B has size 7, see part e)
b) Remember that
. 0 is a root of p, so we have that
.
c) The matrix T must be a nxn matrix so that the product BTB is well defined. Therefore det(T) is defined and by part c) we have that det(BTB)=det(B)det(T)det(B)=0.
d) det(B)=0 by part c) so B is not invertible.
e) The degree of the characteristic polynomial p is equal to the size of the matrix B. Summing the multiplicities of each root, p has degree 7, therefore the size of B is n=7.
Split up the interval [0, 2] into <em>n</em> equally spaced subintervals:
![\left[0,\dfrac2n\right],\left[\dfrac2n,\dfrac4n\right],\left[\dfrac4n,\dfrac6n\right],\ldots,\left[\dfrac{2(n-1)}n,2\right]](https://tex.z-dn.net/?f=%5Cleft%5B0%2C%5Cdfrac2n%5Cright%5D%2C%5Cleft%5B%5Cdfrac2n%2C%5Cdfrac4n%5Cright%5D%2C%5Cleft%5B%5Cdfrac4n%2C%5Cdfrac6n%5Cright%5D%2C%5Cldots%2C%5Cleft%5B%5Cdfrac%7B2%28n-1%29%7Dn%2C2%5Cright%5D)
Let's use the right endpoints as our sampling points; they are given by the arithmetic sequence,

where
. Each interval has length
.
At these sampling points, the function takes on values of

We approximate the integral with the Riemann sum:

Recall that

so that the sum reduces to

Take the limit as <em>n</em> approaches infinity, and the Riemann sum converges to the value of the integral:

Just to check:

<u>Finding x:</u>
We know that the diagonals of a rhombus bisect its angles
So, since US is a diagonal of the given rhombus:
∠RUS = ∠TUS
10x - 23 = 3x + 19 [replacing the given values of the angles]
7x - 23 = 19 [subtracting 3x from both sides]
7x = 42 [adding 23 on both sides]
x = 6 [dividing both sides by 7]
<u>Finding ∠RUT:</u>
We can see that:
∠RUT = ∠RUS + ∠TUS
<em>Since we are given the values of ∠RUS and ∠TUS:</em>
∠RUT = (10x - 23) + (3x + 19)
∠RUT = 13x - 4
<em>We know that x = 6:</em>
∠RUT = 13(6)- 4
∠RUT = 74°
Answer:
a)0.6192
b)0.7422
c)0.8904
d)at least 151 sample is needed for 95% probability that sample mean falls within 8$ of the population mean.
Step-by-step explanation:
Let z(p) be the z-statistic of the probability that the mean price for a sample is within the margin of error. Then
z(p)=
where
- Me is the margin of error from the mean
- s is the standard deviation of the population
a.
z(p)=
≈ 0.8764
by looking z-table corresponding p value is 1-0.3808=0.6192
b.
z(p)=
≈ 1.1314
by looking z-table corresponding p value is 1-0.2578=0.7422
c.
z(p)=
≈ 1.6
by looking z-table corresponding p value is 1-0.1096=0.8904
d.
Minimum required sample size for 0.95 probability is
N≥
where
- z is the corresponding z-score in 95% probability (1.96)
- s is the standard deviation (50)
- ME is the margin of error (8)
then N≥
≈150.6
Thus at least 151 sample is needed for 95% probability that sample mean falls within 8$ of the population mean.