If we let Q be the number of quarters and N be number of nickels, this is the formula we would use:
[1] 25Q + 5N = 635 (using cents instead of dollars)
We also know something about Q and N.
[2] Q + N = 51
So multiply both sides of the second equation by 5. The reason we do this is because we're going to need to cancel out one of the variables (either Q or N) to solve for the other one. If we multiply times 5, we'll have 5N in both equations.
5Q + 5N = 255
Now we have two equations, and the second one can be subtracted from the first.
25Q + 5N = 635
-(5Q + 5N) = -255
---------------------
20Q = 380
so
Q = 19
There are 19 quarters.
And since there are 51 coins in all, 51-19 = 32 nickels.
Answer:
I got <em>-9x^3-10x^2+10x-2</em>
Step-by-step explanation:
14. 1.5, 10 <- Answer
15. 5,1 <- Answer
Proof 14
Solve the following system:
{2 x - y = -7 | (equation 1)
4 x - y = -4 | (equation 2)
Swap equation 1 with equation 2:
{4 x - y = -4 | (equation 1)
2 x - y = -7 | (equation 2)
Subtract 1/2 × (equation 1) from equation 2:
{4 x - y = -4 | (equation 1)
0 x - y/2 = -5 | (equation 2)
Multiply equation 2 by -2:
{4 x - y = -4 | (equation 1)
0 x+y = 10 | (equation 2)
Add equation 2 to equation 1:
{4 x+0 y = 6 | (equation 1)
0 x+y = 10 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 3/2 | (equation 1)
0 x+y = 10 | (equation 2)
Collect results:
Answer: {x = 1.5
y = 10
Proof 15.
Solve the following system:
{5 x + 7 y = 32 | (equation 1)
8 x + 6 y = 46 | (equation 2)
Swap equation 1 with equation 2:
{8 x + 6 y = 46 | (equation 1)
5 x + 7 y = 32 | (equation 2)
Subtract 5/8 × (equation 1) from equation 2:{8 x + 6 y = 46 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Divide equation 1 by 2:
{4 x + 3 y = 23 | (equation 1)
0 x+(13 y)/4 = 13/4 | (equation 2)
Multiply equation 2 by 4/13:
{4 x + 3 y = 23 | (equation 1)
0 x+y = 1 | (equation 2)
Subtract 3 × (equation 2) from equation 1:
{4 x+0 y = 20 | (equation 1)
0 x+y = 1 | (equation 2)
Divide equation 1 by 4:
{x+0 y = 5 | (equation 1)
0 x+y = 1 | (equation 2)
Collect results:
Answer: {x = 5 y = 1
Your answer is Answer:
x = -3