Answer:
<em>AB = 3π</em>
Step-by-step explanation:
<em>See attachment for correct format of question.</em>
Given
From the attachment, we have that
θ = 20°
Radius, r = 27
Required
Find length of AB
AB is an arc and it's length can be calculated using arc length formula.
![Length = \frac{\theta}{360} * 2\pi r](https://tex.z-dn.net/?f=Length%20%3D%20%5Cfrac%7B%5Ctheta%7D%7B360%7D%20%2A%202%5Cpi%20r)
<em>Substitute 20 for θ and 27 for r</em>
![Length = \frac{20}{360} * 2\pi *27](https://tex.z-dn.net/?f=Length%20%3D%20%5Cfrac%7B20%7D%7B360%7D%20%2A%202%5Cpi%20%2A27)
![Length = \frac{20 * 2\pi * 27}{360}](https://tex.z-dn.net/?f=Length%20%3D%20%5Cfrac%7B20%20%2A%202%5Cpi%20%2A%2027%7D%7B360%7D)
![Length = \frac{1080 \pi}{360}](https://tex.z-dn.net/?f=Length%20%3D%20%5Cfrac%7B1080%20%5Cpi%7D%7B360%7D)
![Length = 3\pi](https://tex.z-dn.net/?f=Length%20%3D%203%5Cpi)
Hence, the length of arc AB is terms of π is 3π
Answer:
57 seconds
Step-by-step explanation:
55.7 + 1.3 = 57 seconds
Answer:
A
Step-by-step explanation:
Answer: the third one
Step-by-step explanation:
Answer:
x will have to be 45 to make this true
Step-by-step explanation: