1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Anna35 [415]
1 year ago
12

Find the cumulative frequency

Mathematics
1 answer:
aleksandrvk [35]1 year ago
5 0

We get the cumulative frequency as:

                3

                7

               13

               22

               29

               36

               37

We are given the data:

Daily Low(°F)    Frequency

 35 - 39                    3

 40 - 44                    4

 45 - 49                    6

 50 - 54                    9  

 55 - 59                    7

 60 - 64                    7

 65 - 69                     1

We have to find the cumulative frequency of the data.

We will do this by adding the data values of previous interval.

Daily Low(°F)    Frequency     cumulative frequency

 35 - 39                    3                              3

 40 - 44                    4                              7

 45 - 49                    6                             13

 50 - 54                    9                             22

 55 - 59                    7                             29

 60 - 64                    7                             36

 65 - 69                    1                              37

Therefore, we get the cumulative frequency as:

                3

                7

               13

               22

               29

               36

               37

Learn more about  cumulative frequency here:

brainly.com/question/21807065

#SPJ9

You might be interested in
Use linear approximation to approximate √25.3 as follows.
Sophie [7]

The idea is to use the tangent line to f(x)=\sqrt x at x=25 in order to approximate f(25.3)=\sqrt{25.3}.

We have

f(x)=\sqrt x\implies f(25)=\sqrt{25}=5

f'(x)=\dfrac1{2\sqrt x}\implies f'(25)=\dfrac1{10}

so the linear approximation to f(x) is

L(x)=f(5)+f'(5)(x-5)=5+\dfrac{x-5}{10}=\dfrac x{10}+\dfrac92

Hence m=\frac1{10} and b=\frac92.

Then

f(25.3)\approx L(25.3)=\dfrac{25.3}{10}+\dfrac92=\boxed{7.03}

4 0
3 years ago
Examine the division problem
11111nata11111 [884]

Answer:

-9/2 (4/3)

-6

Step-by-step explanation:

4 0
2 years ago
Read 2 more answers
A drama club made $3,200 from a school play. Seventy-five percent of that amount came from ticket sales. Identify the values of
NISA [10]

Answer:

75%

Step-by-step explanation:

For this case, the first thing we will do is name variables:

a: percentage from ticket sales

b: ticket sales

We have then:

a = 75%

b = (0.75) * (3200) = $ 2400

Answer:

a = 75%

b = (0.75) * (3200) = $ 2400

The amount of ticket sales is $ 2400.

8 0
1 year ago
Richard wants to find out his current grade in math dass after taking five quizzes. Which measure of center
Salsk061 [2.6K]

Answer:

question does not seem complete, from what i know it sounds like he should add up the test scores and divide it by five, that will give him his average which should be his grade, please update question if possible

i hope this helped ;)

7 0
3 years ago
Given tan theta =9, use trigonometric identities to find the exact value of each of the following:_______
Ludmilka [50]

Answer:

(a)\ \sec^2(\theta) = 82

(b)\ \cot(\theta) = \frac{1}{9}

(c)\ \cot(\frac{\pi}{2} - \theta) = 9

(d)\ \csc^2(\theta) = \frac{82}{81}

Step-by-step explanation:

Given

\tan(\theta) = 9

Required

Solve (a) to (d)

Using tan formula, we have:

\tan(\theta) = \frac{Opposite}{Adjacent}

This gives:

\frac{Opposite}{Adjacent} = 9

Rewrite as:

\frac{Opposite}{Adjacent} = \frac{9}{1}

Using a unit ratio;

Opposite = 9; Adjacent = 1

Using Pythagoras theorem, we have:

Hypotenuse^2 = Opposite^2 + Adjacent^2

Hypotenuse^2 = 9^2 + 1^2

Hypotenuse^2 = 81 + 1

Hypotenuse^2 = 82

Take square roots of both sides

Hypotenuse =\sqrt{82}

So, we have:

Opposite = 9; Adjacent = 1

Hypotenuse =\sqrt{82}

Solving (a):

\sec^2(\theta)

This is calculated as:

\sec^2(\theta) = (\sec(\theta))^2

\sec^2(\theta) = (\frac{1}{\cos(\theta)})^2

Where:

\cos(\theta) = \frac{Adjacent}{Hypotenuse}

\cos(\theta) = \frac{1}{\sqrt{82}}

So:

\sec^2(\theta) = (\frac{1}{\cos(\theta)})^2

\sec^2(\theta) = (\frac{1}{\frac{1}{\sqrt{82}}})^2

\sec^2(\theta) = (\sqrt{82})^2

\sec^2(\theta) = 82

Solving (b):

\cot(\theta)

This is calculated as:

\cot(\theta) = \frac{1}{\tan(\theta)}

Where:

\tan(\theta) = 9 ---- given

So:

\cot(\theta) = \frac{1}{\tan(\theta)}

\cot(\theta) = \frac{1}{9}

Solving (c):

\cot(\frac{\pi}{2} - \theta)

In trigonometry:

\cot(\frac{\pi}{2} - \theta) = \tan(\theta)

Hence:

\cot(\frac{\pi}{2} - \theta) = 9

Solving (d):

\csc^2(\theta)

This is calculated as:

\csc^2(\theta) = (\csc(\theta))^2

\csc^2(\theta) = (\frac{1}{\sin(\theta)})^2

Where:

\sin(\theta) = \frac{Opposite}{Hypotenuse}

\sin(\theta) = \frac{9}{\sqrt{82}}

So:

\csc^2(\theta) = (\frac{1}{\frac{9}{\sqrt{82}}})^2

\csc^2(\theta) = (\frac{\sqrt{82}}{9})^2

\csc^2(\theta) = \frac{82}{81}

4 0
3 years ago
Other questions:
  • A is the point with coordinates (4,6)
    10·1 answer
  • Donna sliced several pizzas to serve at her party. Each slice represents
    5·1 answer
  • a ball is thrown straight up from the top of a tower that is 280 ft high with an initial velocity of 48 ft/s . the height of the
    14·2 answers
  • What is the answer to 2+2*8
    14·2 answers
  • In trail mix, the ratio of cups of peanuts to cups of chocolate candies is 3 to 2. How many cups of chocolate candies would be n
    15·1 answer
  • Please please please help fast this is a BIG deal
    9·2 answers
  • Maria's Grocery Store buys grapefruit at a cost
    6·1 answer
  • How do you solve this equation step-by-step? (below)<br><br><br> 4a + 8 - 2a - 3 = 45
    7·2 answers
  • Help plss<br> What is the value of x<br> A. 36<br> B. 60<br> C. 48<br> D. 30
    11·2 answers
  • Existe un número, tal que, el doble del cuadrado del número es 12 unidades mayor, que el quíntuplo (5) del número mismo, ¿cuál e
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!