The given equation of the ellipse is x^2
+ y^2 = 2 x + 2 y
At tangent line, the point is horizontal with the x-axis
therefore slope = dy / dx = 0
<span>So we have to take the 1st derivative of the equation
then equate dy / dx to zero.</span>
x^2 + y^2 = 2 x + 2 y
x^2 – 2 x = 2 y – y^2
(2x – 2) dx = (2 – 2y) dy
(2x – 2) / (2 – 2y) = 0
2x – 2 = 0
x = 1
To find for y, we go back to the original equation then substitute
the value of x.
x^2 + y^2 = 2 x + 2 y
1^2 + y^2 = 2 * 1 + 2 y
y^2 – 2y + 1 – 2 = 0
y^2 – 2y – 1 = 0
Finding the roots using the quadratic formula:
y = [-(- 2) ± sqrt ( (-2)^2 – 4*1*-1)] / 2*1
y = 1 ± 2.828
y = -1.828 , 3.828
<span>Therefore the tangents are parallel to the x-axis at points (1, -1.828)
and (1, 3.828).</span>
Answer:
-3
the blue dot on the no line represent -3
By Question it's given that the sum of two numbers is 15 . And we need to find out the numbers. So ,
<u><em>Let </em><em>us </em><em>take</em><em> </em><em>:</em><em>-</em><em> </em></u>
- First number = x
- Second number = x + 1
<em><u>According</u></em><em><u> to</u></em><em><u> the</u></em><em><u> Question</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em>
<em><u>Therefore</u></em><em><u> </u></em><em><u>:</u></em><em><u>-</u></em><em><u> </u></em>
- First number = 7
- Second number = 8
<u>Hence</u><u> the</u><u> </u><u>two </u><u>numbers</u><u> </u><u>are </u><u>7</u><u> </u><u>and </u><u>8</u><u>. </u>
Step-by-step explanation:
let blue marbles= B
yellow marbles = Y
red marbles = R