
- Given - <u>A </u><u>trapezium</u><u> </u><u>ABCD </u><u>with </u><u>non </u><u>parallel </u><u>sides </u><u>of </u><u>measure </u><u>1</u><u>5</u><u> </u><u>cm </u><u>each </u><u>!</u><u> </u><u>along </u><u>,</u><u> </u><u>the </u><u>parallel </u><u>sides </u><u>are </u><u>of </u><u>measure </u><u>1</u><u>3</u><u> </u><u>cm </u><u>and </u><u>2</u><u>5</u><u> </u><u>cm</u>
- To find - <u>Area </u><u>of </u><u>trapezium</u>
Refer the figure attached ~
In the given figure ,
AB = 25 cm
BC = AD = 15 cm
CD = 13 cm
<u>Construction</u><u> </u><u>-</u>

Now , we can clearly see that AECD is a parallelogram !
AE = CD = 13 cm
Now ,

Now , In ∆ BCE ,

Now , by Heron's formula

Also ,

<u>Since </u><u>we've </u><u>obtained </u><u>the </u><u>height </u><u>now </u><u>,</u><u> </u><u>we </u><u>can </u><u>easily </u><u>find </u><u>out </u><u>the </u><u>area </u><u>of </u><u>trapezium </u><u>!</u>

hope helpful :D
I think the answer is C hope this would help you
In 2005, 23 is in the second deviation
19 22 25 28 31 33 35
In 1965, 23 is in the third deviation.
12 14 16 18 20 22 24
<span>By the way, 13.5% range from 22 to 25 in 2005, while 2.1% range from 22 to 24 in 1965</span>
Answer:
160 sq. uits
Step-by-step explanation:
160 sq. uits é a resposta