I'm guessing
<span>A. The chemical equilibrium will shift to the right.</span>
Answer:
everyone would die
Explanation:
if we did not know about it we would not do anything about it
Answer:
Molecular solid
Explanation:
A molecular solid has a low melting point, they are soft and do not conduct electricity.
We have been told in the question that the solid does not really dissolve in water and it's solution does not improve the electrical conductivity of water. Hence, it must be a molecular solid.
Answer:
(a) 7.11 x 10⁻³⁷ m
(b) 1.11 x 10⁻³⁵ m
Explanation:
(a) The de Broglie wavelength is given by the expression:
λ = h/p = h/mv
where h is plancks constant, p is momentum which is equal to mass times velocity.
We have all the data required to calculate the wavelength, but first we will have to convert the velocity to m/s, and the mass to kilograms to work in metric system.
v = 19.8 mi/h x ( 1609.34 m/s ) x ( 1 h / 3600 s ) = 8.85 m/s
m = 232 lb x ( 0.454 kg/ lb ) = 105.33 kg
λ = h/ mv = 6.626 x 10⁻³⁴ J·s / ( 105.33 kg x 8.85 m/s ) = 7.11 x 10⁻³⁷ m
(b) For this part we have to use the uncertainty principle associated with wave-matter:
ΔpΔx > = h/4π
mΔvΔx > = h/4π
Δx = h/ (4π m Δv )
Again to utilize this equation we will have to convert the uncertainty in velocity to m/s for unit consistency.
Δv = 0.1 mi/h x ( 1609.34 m/mi ) x ( 1 h/ 3600 s )
= 0.045 m/s
Δx = h/ (4π m Δv ) = 6.626 x 10⁻³⁴ J·s / (4π x 105.33 kg x 0.045 m/s )
= 1.11 x 10⁻³⁵ m
This calculation shows us why we should not be talking of wavelengths associatiated with everyday macroscopic objects for we are obtaining an uncertainty of 1.11 x 10⁻³⁵ m for the position of the fullback.
Answer:
Explanation:
Use the trigonometric ratio definition of the tangent function and the quotient rule.
Quotient rule: the derivative of a quotient is:
- [the denominator × the derivative of the numerator less the numerator × the derivative of the denominator] / [denominator]²
- (f/g)' = [ g×f' - f×g'] / g²
So,
- tan(x)' = [ sin(x) / cos(x)]'
- [ sin(x) / cos(x)]' = [ cos(x) sin(x)' - sin(x) cos(x)' ] / [cos(x)]²
= [ cos(x)cos(x) + sin(x) sin(x) ] / [ cos(x)]²
= [ cos²(x) + sin²(x) ] / cos²(x)
= 1 / cos² (x)
= sec² (x)
The result is that the derivative of tan(x) is sec² (x)