Answer:
A solid will not take the shape of its container
Explanation:
The metric prefix name for 1/100 is centimeters.
Answer:

Explanation:
Hello,
Considering the ideal equation of state:

The moles are defined in terms of mass as follows:

Whereas
the gas' molar mass, thus:

Now, since the density is defined as the quotient between the mass and the volume, we get:

Solving for
:

Thus, the result is given by:
![density=\frac{(1atm)(44g/mol)}{[0.082atm*L/(mol*K)]*298.15K} \\density=1.8g/L=1.8x10^{-3}g/mL](https://tex.z-dn.net/?f=density%3D%5Cfrac%7B%281atm%29%2844g%2Fmol%29%7D%7B%5B0.082atm%2AL%2F%28mol%2AK%29%5D%2A298.15K%7D%20%5C%5Cdensity%3D1.8g%2FL%3D1.8x10%5E%7B-3%7Dg%2FmL)
Best regards.
A. They were ways Congress sought to guarantee blacks the full rights of citizenship.
<span>63.4 g/mol
First, let's determine how many atoms per unit cell in face-centered cubic.
There is 8 corners, each of which has 1 atom, and each of those atoms is shared between 8 other unit cells. So 8*1/8 = 1 atom per unit cell. Additionally, there are 6 faces, each of which has 1 atom that's shared between 2 unit cells. So 6*1/2 = 3 atoms per unit cell. So each unit cell has the mass of 1+3 = 4 atoms.
Since there is 1000 liters per cubic meter, the mass per liter is 8920 kg/1000 = 8.920 kg/L. Now the mass per unit cell is 8920 g * 4.72x10^-26 = 4.21024x10^-22 g per unit cell. The mass per atom is 4.21024x10^-22 g / 4 = 1.05256x10^-22 g/atom, Finally, multiply by Avogadro's number, getting 1.05256x10^-22 g/atom * 6.0221409x10^23 atom/mol = 63.38664625704 g/mol.
Rounding to 3 significant digits gives 63.4 g/mol.</span>