The second stone hits the ground exactly one second after the first.
The distance traveled by each stone down the cliff is calculated using second kinematic equation;

where;
- <em>t is the time of motion </em>
- <em />
<em> is the initial vertical velocity of the stone = 0</em>

The time taken by the first stone to hit the ground is calculated as;

When compared to the first stone, the time taken by the second stone to hit the ground after 1 second it was released is calculated as


Thus, we can conclude that the second stone hits the ground exactly one second after the first.
"<em>Your question is not complete, it seems be missing the following information;"</em>
A. The second stone hits the ground exactly one second after the first.
B. The second stone hits the ground less than one second after the first
C. The second stone hits the ground more than one second after the first.
D. The second stone hits the ground at the same time as the first.
Learn more here:brainly.com/question/16793944
Answer:
The neutron loses all of its kinetic energy to nucleus.
Explanation:
Given:
Mass of neutron is 'm' and mass of nucleus is 'm'.
The type of collision is elastic collision.
In elastic collision, there is no loss in kinetic energy of the system. So, total kinetic energy is conserved. Also, the total momentum of the system is conserved.
Here, the nucleus is still. So, its initial kinetic energy is 0. So, the total initial kinetic energy will be equal to kinetic energy of the neutron only.
Now, final kinetic energy of the system will be equal to the initial kinetic energy.
Now, as the nucleus was at rest initially, so the final kinetic energy of the nucleus will be equal to the initial kinetic energy of the neutron.
Thus, all the kinetic energy of the neutron will be transferred to the nucleus and the neutron will come to rest after collision.
Therefore, the neutron loses all of its kinetic energy to nucleus.
Answer:
2577 K
Explanation:
Power radiated , P = σεAT⁴ where σ = Stefan-Boltzmann constant = 5.6704 × 10⁻⁸ W/m²K⁴, ε = emissivity of bulb filament = 0.8, A = surface area of bulb = 30 mm² = 30 × 10⁻⁶ m² and T = operating temperature of filament.
So, T = ⁴√(P/σεA)
Since P = 60 W, we substitute the vales of the variables into T. So,
T = ⁴√(P/σεA)
= ⁴√(60 W/(5.6704 × 10⁻⁸ W/m²K⁴ × 0.8 × 30 × 10⁻⁶ m²)
= ⁴√(60 W/(136.0896 × 10⁻¹⁴ W/K⁴)
= ⁴√(60 W/(13608.96 × 10⁻¹⁶ W/K⁴)
= ⁴√(0.00441 × 10¹⁶K⁴)
= 0.2577 × 10⁴ K
= 2577 K
Answer:


Explanation:
The speed is the distance traveled divided by the time taken. The distance traveled in 24hs while standing on the equator is the circumference of the Earth
, where
is the radius of the Earth.
We have then:

And then we use the centripetal acceleration formula:

We know that
g = LcosΘ
<span>where g, L and Θ are centripetal gravity length, and angle of object
</span><span>ω² = g/LcosΘ </span>
<span>ω = √(g / LcosΘ) </span>