1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Vika [28.1K]
3 years ago
6

How long will it take for a car to travel 200 km if it has an average speed of 55 km/hr? ​

Physics
1 answer:
andreyandreev [35.5K]3 years ago
4 0

Answer: Approximately 3.65 hours

Explanation:

55 km/h x 3.65 hrs = 200.75 Km/h

You might be interested in
A lightweight vertical spring of force constant k has its lower end mounted on a table. You compress the spring by a distance d,
shusha [124]

Answer:

v=d\sqrt{\frac{k}{m}}

Explanation:

In order to solve this problem, we can do an analysis of the energies involved in the system. Basically the addition of the initial potential energy of the spring and the kinetic energy of the mass should be the same as the addition of the final potential energy of the spring and the kinetic energy of the block. So we get the following equation:

U_{0}+K_{0}=U_{f}+K_{f}

In this case, since the block is moving from rest, the initial kinetic energy is zero. When the block loses contact with the spring, the final potential energy of the spring will be zero, so the equation simplifies to:

U_{0}=K_{f}

The initial potential energy of the spring is given by the equation:

U_{0}=\frac{1}{2}kd^{2}

the Kinetic energy of the block is then given by the equation:

K_{f}=\frac{1}{2}mv_{f}^{2}

so we can now set them both equal to each other, so we get:

=\frac{1}{2}kd^{2}=\frac{1}{2}mv_{f}^{2}

This new equation can be simplified if we multiplied both sides of the equation by a 2, so we get:

kd^{2}=mv_{f}^{2}

so now we can solve this for the final velocity, so we get:

v=d\sqrt{\frac{k}{m}}

6 0
3 years ago
A tennis ball connected to a string is spun around in a vertical, circular path at a uniform speed. The ball has a mass m = 0.15
Oksanka [162]

1) 5.5 N

When the ball is at the bottom of the circle, the equation of the forces is the following:

T-mg = m\frac{v^2}{R}

where

T is the tension in the string, which points upward

mg is the weight of the string, which points downward, with

m = 0.158 kg being the mass of the ball

g = 9.8 m/s^2 being the acceleration due to gravity

m \frac{v^2}{R} is the centripetal force, which points upward, with

v = 5.22 m/s being the speed of the ball

R = 1.1 m being the radius of the circular trajectory

Substituting numbers and re-arranging the formula, we find T:

T=mg+m\frac{v^2}{R}=(0.158 kg)(9.8 m/s^2)+(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=5.5 N

2) 3.9 N

When the ball is at the side of the circle, the only force acting along the centripetal direction is the tension in the string, therefore the equation of the forces becomes:

T=m\frac{v^2}{R}

And by substituting the numerical values, we find

T=(0.158 kg)\frac{(5.22 m/s)^2}{1.1 m}=3.9 N

3) 2.3 N

When the ball is at the top of the circle, both the tension and the weight of the ball point downward, in the same direction of the centripetal force. Therefore, the equation of the force is

T+mg=m\frac{v^2}{R}

And substituting the numerical values and re-arranging it, we find

T=m\frac{v^2}{R}-mg=(0.158 kg)\frac{5.22 m/s)^2}{1.1 m}-(0.158 kg)(9.8 m/s^2)=2.3 N

4) 3.3 m/s

The minimum velocity for the ball to keep the circular motion occurs when the centripetal force is equal to the weight of the ball, and the tension in the string is zero; therefore:

T=0\\mg = m\frac{v^2}{R}

and re-arranging the equation, we find

v=\sqrt{gR}=\sqrt{(9.8 m/s^2)(1.1 m)}=3.3 m/s

7 0
3 years ago
( Find the value of the following in ms-1<br> 54kmhr
Darina [25.2K]

Answer:

54 × 5/18 = 15m/s

Explanation:

to convert km/hr to m/s you multiply by 5/18

6 0
1 year ago
At the Indianapolis 500, you can measure the speed of cars just by listening to the difference in pitch of the engine noise betw
allsm [11]

To develop this problem it is necessary to apply the concepts related to the Dopler effect.

The equation is defined by

f_i = f_0 \frac{c}{c+v}

Where

f_h= Approaching velocities

f_i= Receding velocities

c = Speed of sound

v = Emitter speed

And

f_h = f_0 \frac{c}{c+v}

Therefore using the values given we can find the velocity through,

\frac{f_h}{f_0}=\frac{c-v}{c+v}

v = c(\frac{f_h-f_i}{f_h+f_i})

Assuming the ratio above, we can use any f_h and f_i with the ratio 2.4 to 1

v = 353(\frac{2.4-1}{2.4+1})

v = 145.35m/s

Therefore the cars goes to 145.3m/s

7 0
3 years ago
Technician A says that wheel cylinder dust boots keep dust and moisture out of the cylinder bore. Technician B says that it is n
timurjin [86]

Answer:

i think its technician A

7 0
3 years ago
Other questions:
  • a layer of sandstone is in contact with a mass of granite. the sandstone contains small fragments of the granite. which rock is
    7·1 answer
  • What is the value of work done on an object when a 70–newton force moves it 9.0 meters in the same direction as the force?
    14·1 answer
  • The distance between the lenses in a compound microscope is 18 cm. The focal length of the objective is 1.5 cm. If the microscop
    7·1 answer
  • The FIRST space station placed into orbit around the earth followed by a team sent from earth to link up with the station was de
    6·2 answers
  • A car traveling 91 km/h is 280 m behind a truck traveling 76 km/h.
    13·1 answer
  • A weight lifter raises a 1600 N barbell to a height of 2.0 meters. How much work was done? W = Fd
    13·2 answers
  • An artificial satellite orbits Earth at a speed of 7800 m/s and a height of 200 km above Earth's surface. The satellite experien
    14·1 answer
  • What is the voltage of a computer with 30 Ω of resistance and 15 amps of current?
    6·1 answer
  • Which describes the greenhouse effect? 1. Earth continues to get warmer over time because it is slowly moving closer to the sun.
    5·1 answer
  • A speedboat with a mass of 531 kg (including the driver) is tethered to a fixed buoy by a strong 30.3 m cable. The boat's owner
    10·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!