Given speed and the distance that must be covered, the time it will take the ultraviolet light to reach the earth is 3.7 × 10⁴ hours.
<h3>
What is Speed?</h3>
Speed is simply referred to as distance traveled per unit time.
Mathematically, Speed = Distance ÷ time.
Given the data in the question;
- Speed of the Ultraviolet light c = 3.0 × 10⁸m/s = 1.08 × 10⁹km/h
- Distance it must cover d = 4.0 × 10¹³km
We substitute our given values into the expression above.
Speed = Distance ÷ time
1.08 × 10⁹km/h = 4.0 × 10¹³km ÷ t
t = 4.0 × 10¹³km ÷ 1.08 × 10⁹km/h
t = 3.7 × 10⁴ hrs
Therefore, given speed and the distance that must be covered, the time it will take the ultraviolet light to reach the earth is 3.7 × 10⁴ hours.
Learn more about speed here: brainly.com/question/7359669
#SPJ4
Answer:
The answer is C. Seismic waves.
Explanation:
- <u>Seismic waves are waves of energy that travel through Earth's layers, and are a result of earthquakes.</u>
As more and more lamps are connected in parallel (and if the current does not produce heating inside the battery) their brightness stays the same. Each lamp has the same voltage across it. Each lamp added in parallel decreases the total resistance in the circuit, so additional current flows.
Answer:
The answer is 18 N.
Explanation:
A force can be divided into components x and y components. The component along the x-axis is called the horizontal component and along the y-axis is called the vertical component. In this case, as the force is in a horizontal direction and is also known as x-component of force. The x- component of force is
Fx = Fcosθ
Fx = 22(cos 35°)
Fx = 22 x 0.819
Fx = 18 N
Child's horizontal pull forces are equal to that of frictional resistance force on the wagon.
Answer:
Option 10. 169.118 J/KgºC
Explanation:
From the question given above, the following data were obtained:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1.61 KJ
Mass of metal bar = 476 g
Specific heat capacity (C) of metal bar =?
Next, we shall convert 1.61 KJ to joule (J). This can be obtained as follow:
1 kJ = 1000 J
Therefore,
1.61 KJ = 1.61 KJ × 1000 J / 1 kJ
1.61 KJ = 1610 J
Next, we shall convert 476 g to Kg. This can be obtained as follow:
1000 g = 1 Kg
Therefore,
476 g = 476 g × 1 Kg / 1000 g
476 g = 0.476 Kg
Finally, we shall determine the specific heat capacity of the metal bar. This can be obtained as follow:
Change in temperature (ΔT) = 20 °C
Heat (Q) absorbed = 1610 J
Mass of metal bar = 0.476 Kg
Specific heat capacity (C) of metal bar =?
Q = MCΔT
1610 = 0.476 × C × 20
1610 = 9.52 × C
Divide both side by 9.52
C = 1610 / 9.52
C = 169.118 J/KgºC
Thus, the specific heat capacity of the metal bar is 169.118 J/KgºC