Answer:
Large quantities of water molecules constantly move across cell membranes by simple diffusion, often facilitated by movement through membrane proteins, including aquaporins. In general, net movement of water into or out of cells is negligible. For example, it has been estimated that an amount of water equivalent to roughly 100 times the volume of the cell diffuses across the red blood cell membrane every second; the cell doesn't lose or gain water because equal amounts go in and out. There are, however, many cases in which net flow of water occurs across cell membranes and sheets of cells. An example of great importance to you is the secretion of and absorption of water in your small intestine. In such situations, water still moves across membranes by simple diffusion, but the process is important enough to warrant a distinct name - osmosis.
Answer:
A OPTION IS THE CORRECT ANSWER
PLEASE MARK ME AS THE BRAINLIEST
C G A U A G C A G G U A U C G G A U A C U C G
Answer:
The answer would be A, only chloroplasts and vacuoles are found in plant cells. :)
Answer:
Alleles for feather colour exhibit incomplete dominance or co-dominance.
50% gray offspring + 50% black offspring
Explanation:
<em>It means that the alleles for feather colour in the hen exhibit incomplete dominance or co-dominance over one another.</em>
Assuming the allele for white colour is B, white colour will be b while the heterozygote Bb gives the gray phenotype.
Gray rooster + gray hen = 15 gray chicks, 6 black chicks and 8 white chicks.
15:6:8 is roughly 2:1:1 which is phenotypic ratio obtainable from crossing two heterozygous individuals as pointed out by Mendel.
Bb x Bb = 1BB, 2Bb, and 1bb
Crossing the gray rooster (Bb) with a black hen (bb):
Bb x bb = Bb, Bb, bb, and bb
= 2Bb (gray):2bb (black)
50% of the offspring will be gray while the remaining 50% will be black.