Answer:
37 mmol of acetate need to add to this solution.
Explanation:
Acetic acid is an weak acid. According to Henderson-Hasselbalch equation for a buffer consist of weak acid (acetic acid) and its conjugate base (acetate)-
![pH=pK_{a}(acetic acid)+log[\frac{mmol of CH_{3}COO^{-}}{mmol of CH_{3}COOH }]](https://tex.z-dn.net/?f=pH%3DpK_%7Ba%7D%28acetic%20acid%29%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7Bmmol%20of%20CH_%7B3%7DCOOH%20%7D%5D)
Here pH is 5.31,
(acetic acid) is 4.74 and number of mmol of acetic acid is 10 mmol.
Plug in all the values in the above equation:
![5.31=4.74+log[\frac{mmol of CH_{3}COO^{-}}{10}]](https://tex.z-dn.net/?f=5.31%3D4.74%2Blog%5B%5Cfrac%7Bmmol%20of%20CH_%7B3%7DCOO%5E%7B-%7D%7D%7B10%7D%5D)
or, mmol of
= 37
So 37 mmol of acetate need to add to this solution.
Answer:
1.) Nascent Hydrogen has more energy than Molecular Hydrogen.
2.) Nascent Hydrogen is are more on the side of atomic and since atoms are more active than molecules, Nascent Hydrogen becomes more reactive.
Answer:
c.- How much of the reactants are needed and how much product will made.
Explanation:
The moles is the matter unit used in chemistry to simplify some calculations, instead of using grams. Also the moles are very useful because the chemical reaction can be balanced.
When a Chemical reaction is balanced, then it can be easily to calculate how many moles are necessary to add in a process to obtain a quantity of grams of a product.
The answer is A. Water
Bronsted-Lowry base compounds are those that can accept protons
Bronsted-Lowry Acid Compounds are those that can recieve one
Water / H2O is an Amphoteric compund which mean that its molecul can act as a Base and Acid compound, so the answer is A.
Answer 1:
Isomers are compounds with same molecular formula but different structure formula. Isomers are classified into two types
a) Structural/configurational isomers
b) Stereo isomers
In structural/configurational isomers atom and functional groups are attached in different fashion. Structural isomers may have different functional groups. Structural isomers are further classified as chain isomers, position isomers and functional isomers. In case of stereo-isomers, compounds have same functional group, but different orientation in space. They also have difference activity towards polarized light.
Answer 2:
Hexane has a molecular formula of C6H14. It exhibits following structural isomers
a) hexane<span>,
b) 2-methylpentane
c)3-methylpentane
d) 2,2-dimethylbutane
e) 2,3-dimethylbutane
Thus, in all there are 5 isomers of hexane
Answer 3:
</span><span>Butane has two possible isomers but that decane has 75 possible isomers. This can be attributed to the fact that butane has 4 carbon atoms, while decane has 10 carbon atom. As the number of carbon atom increases, there are higher possible sites of linkage, in different fashion. Therefore, as number 69 of carbon atoms increases, number of different possible isomers increases.
Answer 4:
It has been observed that, though isomers have same molecular formula, but the have different boiling points. Infact, branched isomers have lower boiling point as compared to linear isomers. For example, hexane has boiling point = 69 oC, 2 methyl pentane has boiling point = 60 oC, 2,4, dimethyl butane has boiling point = 58 oC and 2,2 dimethyl butane has boiling point = 50 oC. Thus, it can be observed that branched isomers have lower boiling points as compared to linear isomers. This can be attributed to lower van der Waal's forces of interaction in branched isomers as compared to linear isomers.
</span><span>
</span>