Answer:
The mass of the Al-duckie should be 30 kg.
Explanation:
We will use the first law of thermodynamics:
ΔU = m·Cv·ΔT
Since the specific heat of water is 4.185 J(gºC), the change in the water's internal energy would be:
ΔU = 100 kg · 4.185 J(gºC) · (42ºC - 38ºC) = 1674 KJ
Given that no heat is lost, all the internal energy that the water loses while cooling down will transfer to the duckie. So, if the duckie has ΔU = 1674 KJ and its final temperature is the desired 38 ºC, we can calculate its mass using the first law again:
![m=\frac{\Delta{U}}{Cv{\Delta{T}}}=\frac{1674}{0.9*[38-(-24)]}=30Kg](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B%5CDelta%7BU%7D%7D%7BCv%7B%5CDelta%7BT%7D%7D%7D%3D%5Cfrac%7B1674%7D%7B0.9%2A%5B38-%28-24%29%5D%7D%3D30Kg)
Answer:
84 protons and 128 neutron
Bacteria get rid of waste through their semi-permeable membrane by diffusion. The waste is pushed out of the organism in the form of liquid or gas. The waste released by bacteria is usually toxic and is what makes people sick.
Answer:
1.6 m/s
Explanation:
First you need to find the momentums of each disc by multiplying their velocities with mass.
disc 1: 7*1= 7 kg m/s
disc 2: 1*9= 9 kg m/s
Second, you need to find the total momentum of the system by adding the momentums of each sphere.
9+7= 16 kg m/s
Because momentum is conserved, this is equal to the momentum of the composite body.
Finally, to find the composite body's velocity, divide its total momentum by its mass. This is because mass*velocity=momentum
16/10=1.6
The velocity of the composite body is 1.6 m/s.
Answer:
U2 = KAε0V2 / (2d)
Explanation:
The dielectric constant K just replaces the "3″ from Part B.