Answer:
confocal microscopy
Explanation:
According to my research on different types of microscopes, I can say that based on the information provided within the question the tool being mentioned in this situation is a confocal microscopy. This is an extremely powerful microscope used to develop extremely sharp images of cells and tissues by viewing one plane of the specimen at a given time.
I hope this answered your question. If you have any more questions feel free to ask away at Brainly.
Explanation:
It is given that,
Mass of the rim of wheel, m₁ = 7 kg
Mass of one spoke, m₂ = 1.2 kg
Diameter of the wagon, d = 0.5 m
Radius of the wagon, r = 0.25 m
Let I is the the moment of inertia of the wagon wheel for rotation about its axis.
We know that the moment of inertia of the ring is given by :


The moment of inertia of the rod about one end is given by :

l = r


For 6 spokes, 
So, the net moment of inertia of the wagon is :


So, the moment of inertia of the wagon wheel for rotation about its axis is
. Hence, this is the required solution.
Where are the statements? You forgot to attach them lol
Hello!
The slope of the line given by graphing pressure vs 1/Volume at constant temp for one mole of gas will give you the value for nRT from equation PV=nRT
So set nRT=slope and take the constant number mole of gas and the constant temp and solve for R the universal gas constant. You arm for pressure and litters for volume to get R in units of L*atm/mol*k
Hope this helps you! Thanks!!
That's called the "normal" to the surface at that point.