The equation to be used here is the trajectory of a projectile as written below:
y = xtanθ +/- gx²/2v²(cosθ)²
where
y is the vertical distance
x is the horizontal distance
θ is the angle of trajectory or launch angle
g is 9.81 m/s²
v is the initial velcity
Since the angle is below horizontal, let's use the minus equation. Substituting the values:
- 0.8 m = xtan15° - (9.81 m/s²)x²/2(4.8 m/s)²(cos15°)²
Solving for x,
x = 2.549 m
However, we only take half of this distance because it was specified that the distance asked before bouncing. Hence, the horizontal distance is equal to 1.27 m.
Answer:
It compares the the difference between a radioactive element remaining in specimen to the amount of the radioactive element that would have been originally trapped in the specimen. This is done by comparing the ratio of the relative abundance of this radioactive element to its non radioactive isotope in nature to their ratio remaining in the specimen and comparing it to the half-life of the radioactive isotope.
Answer:
Explanation:
ΔE = Δm × c^2
where,
ΔE = change in energy released with respect to change in mass
= 1.554 × 10^3 kJ
= 1.554 × 10^6 J
Δm = change in mass
c = the speed of light.
= 3 × 10^8 m/s
Equation of the reaction:
2H2 + O2 --> 2H2O
Mass change in this process, Δm = 1.554 × 10^6/(3 × 10^8)^2
= 1.727 × 10^-11 kg
The change in mass calculated from Einstein equation is small that its effect on formation of product will be negligible. Hence, law of conservation of mass holds correct for chemical reactions.
:<span> </span><span>The gradient of the curve 1/x at x=2 is m = -¼
We may choose any length of line to represent the direction of the slope (direction vector) at that point. We could choose a line for which x = 2 and then y would have to be -½ so that the gradient is still = -½/2 = -¼. It is simply convenient to choose a unit length for x, making y = -¼ The length of the resultant of x and y is √(1²+¼²) = √(17/16) = √(17)/4 which is a direction vector. If we had taken the direction vector to be (2, ½) then we would have a resultant direction vector of √17/2. It doesn't really matter what length the direction vector is - it's job is only to show the direction. So their choice of 1 is quite arbitrary but convenient, since it is easy to work with units – that's why we use units!
Now, we know that the magnitude of the velocity vector must be 5 and the magnitude of our direction vector at the moment is √(17)/4. We therefore need to multiply this direction vector by 20/√(17) to get 5 – just try it : √(17)/4 × 20/√(17) = 5.
We could equally well have done this with (2, ½) and would have got 2½ for lambda.</span>
Answer:
2NaOH+H2SO4 Na2SO4+H2O the equation is balanced/unbalanced because the number of hydrogen atoms and oxygen/sodium is equal/not equal in the reactants and in the products.
Explanation: