Answer:
Explanation:
In the decibel scale , intensity of sound changes logarithmically as follows
Value in decibel scale , the value of I₀ = 10⁻¹² W /m².
Putting the values



W/m²
Similarly for 54 dB sound intensity can be given as follows
I = 10⁻¹² x 
W / m²
For intensity of sound the relation is as follows
I = 2π²υ²A²ρc where υ is frequency , A is amplitude , ρ is density of air and c is velocity of sound .
Putting the given values for 71 dB
= 2π² x 504²xA²x 1.21 x 346
A² = 60.03 x 10⁻¹⁶
A = 7.74 x 10⁻⁸ m
For 54 dB sound
= 2π² x 504²xA²x 1.21 x 346
A² = 1.1978 x 10⁻¹⁶
A = 1.1 x 10⁻⁸ m
Answer:
the distance between the submarine and the ocean floor is 11,250 m
Explanation:
Given;
speed of the wave, v = 1500 m/s
time of motion of the wave, t = 15 s
The time taken to receive the echo is calculated as;

Therefore, the distance between the submarine and the ocean floor is 11,250 m
I think you can google this because I really don’t know the answer I’m so sorry
Answer:
0.96 m
Explanation:
First, convert km/h to m/s.
162.3 km/h × (1000 m/km) × (1 hr / 3600 s) = 45.08 m/s
Now find the time it takes to move 20 m horizontally.
Δx = v₀ t + ½ at²
20 m = (45.08 m/s) t + ½ (0 m/s²) t²
t = 0.4436 s
Finally, find how far the ball falls in that time.
Δy = v₀ t + ½ at²
Δy = (0 m/s) (0.4436 s) + ½ (-9.8 m/s²) (0.4436 s)²
Δy = -0.96 m
The ball will have fallen 0.96 meters.
Explanation:
Given that,
Wavelength = 6.0 nm
de Broglie wavelength = 6.0 nm
(a). We need to calculate the energy of photon
Using formula of energy



(b). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


(c). We need to calculate the energy of photon
Using formula of energy



(d). We need to calculate the kinetic energy of an electron
Using formula of kinetic energy


Put the value into the formula


Hence, This is the required solution.