D = distance between the cars at the start of time = 680 km
v₁ = speed of one car
v₂ = speed of other car = v₁ - 10
t = time taken to meet = 4 h
distance traveled by one car in time "t" + distance traveled by other car in time "t" = D
v₁ t + v₂ t = D
(v₁ + v₂) t = D
inserting the values
(v₁ + v₁ - 10) (4) = 680
v₁ = 90 km/h
rate of slower car is given as
v₂ = v₁ - 10
v₂ = 90 - 10 = 80 km/h
Answer:
1. Revolve around a point
2. Formed from dust and gas particles
3. Exoplanets and associated star orbit a common center of mass
4. Composed of gases found in Jupiter and Saturn
Answer:
Hz
Explanation:
In alternating current (AC) circuits, voltage (V) oscillates in a sine wave pattern and has a general equation as a function of time (t) as follows;
V(t) = V sin (ωt + Ф) -----------------(i)
Where;
V = amplitude value of the voltage
ω = angular frequency = 2 π f [f = cyclic frequency or simply, frequency]
Ф = phase difference between voltage and current.
<u><em>Now,</em></u>
From the question,
V(t) = 230 sin (100t) ---------------(ii)
<em><u>By comparing equations (i) and (ii) the following holds;</u></em>
V = 230
ω = 100
Ф = 0
<em><u>But;</u></em>
ω = 2 π f = 100
2 π f = 100 [divide both sides by 2]
π f = 50
f =
Hz
Therefore, the frequency of the voltage is
Hz
It’s c because it’s not Control so that means that it would be broken and non fix able
Answer:
The magnitude of the tension in he string is equal to the magnitude of the weight of the object.
Explanation:
According to the Newton's 1st law, An object will remain at rest or in uniform motion in a straight line unless acted upon by an unbalanced force.
In here, the elevator is moving with a constant speed. So the object must have the equal constant speed. Which means, it has a uniform motion. According to Newton's 1st law, the total unbalanced force on the object must be zero . As we know, there are only two forces are on the object and they are,
The tension in string(T) , The weight of the object(W) .
∴ F = 0
T - W = 0
So to balanced those forces, the magnitude of the tension in the string must be equal to the magnitude of the weight of the object.