Answer:
F = -49.1 10³ N
Explanation:
Let's use the kinematics to find the acceleration the acceleration of the bullet that they tell us is constant
² = v₀² + 2 a x
Since the bullet is at rest, the final speed is zero
x = 11.00 cm (1 m / 100 cm) = 0.110 m
0 = v₀² + 2 a x
a = -v₀² / 2 x
a = -1320²/(2 0.110)
a = -7.92 10⁶ m / s²
With Newton's second law we find the force
F = m a
F = 6.20 10⁻³ (-7.92 10⁶)
F = -49.1 10³ N
The sign means that it is the force that the tree exerts to stop the bullet
Answer:
both magnitude and direction
Explanation:
When an object moves in a circular path, its motion is called uniform circular motion. In this motion, the force acting on it is centripetal force and it is moving under centripetal acceleration. This type of force acts towards the centre of the circle.
In this type of motion, the speed remains constant while the velocity keeps on changing. The object's centripetal acceleration remains constant in magnitude as well as direction.
Hence, the correct option is (3).
Answer:
Explanation:
Let v be the terminal velocity of the bar .
emf induced in the bar of length L
= B L v where B is the value of magnetic field.
current i in the circuit containing resistance R
i = induced emf / R
BLv / R
Magnetic force in upward direction in the bar
F = BiL
= BL x BLv / R
B²L²v / R
For attainment of uniform velocity
magnetic force = weight
B²L²v / R = mg
so current
i = BLv / R
Answer:
<h2>918,750 J</h2>
Explanation:
The kinetic energy of an object can be found by using the formula

m is the mass in kg
v is the velocity in m/s
From the question
m = 1500 kg
v = 35 m/s
We have

We have the final answer as
<h3>918,750 J</h3>
Hope this helps you