Answer:
by straining that muscle it can slow down the amount of muscle your supposed to get
Explanation:
Answer:
His final velocity is 15.8 m/s.
Step-by-step explanation:
Given:
Initial velocity of the driver is,
m/s
Acceleration of the driver is,
m/s²
Time taken to reach final velocity is,
s.
The final velocity is given using the Newton's equations of motion as:
, where,
is the final velocity.
Now, plug in the given values and solve for
.

Therefore, his final velocity is 15.8 m/s.
The law applied here is Newton's first law, also known as, law of inertia.
This law states that: A body will retain its state of rest or motion unless acted upon by an external force.
If you are moving and the bus suddenly stops, your body will lurch forward trying to retain its state of motion until it comes to rest and changes its state by the external force acted on it.
If you are at rest and the bus suddenly moves, your body will lurch backwards trying to retain its state of rest and opposing the force of motion until it is forced to change its state by this force.
Parallel has more than one circuit or form of energy
series has only one form of energy circuit
Answer:
<em>The 6000 lines per cm grating, will produces the greater dispersion .</em>
Explanation:
A diffraction grating is an optical component with a periodic (usually one that has ridges or rulings on their surface rather than dark lines) structure that splits and diffracts light into several beams travelling in different directions.
The directions of the light beam produced from a diffraction grating depend on the spacing of the grating, and also on the wavelength of the light.
For a plane diffraction grating, the angular positions of principle maxima is given by
(a + b) sin ∅n = nλ
where
a+b is the distance between two consecutive slits
n is the order of principal maxima
λ is the wavelength of the light
From the equation, we can see that without sin ∅ exceeding 1, increasing the number of lines per cm will lead to a decrease between the spacing between consecutive slits.
In this case, light of the same wavelength is used. If λ and n is held constant, then we'll see that reducing the distance between two consecutive slits (a + b) will lead to an increase in the angle of dispersion sin ∅. So long as the limit of sin ∅ not greater that one is maintained.