<h3>
Answer:</h3>
2.624 g
<h3>
Explanation:</h3>
The equation for the reaction is given as;
- CuSO₄(aq) + 2NaOH(aq) → Cu(OH)₂(s) + Na₂SO₄(aq)
- Volume of CuSO₄ as 46.0 mL;
- Molarity of CuSO₄ as 0.584 M
We are required to calculate the mass of Cu(OH)₂ precipitated
- We are going to use the following steps;
<h3>Step 1: Calculate the number of moles of CuSO₄ used</h3>
Molarity = Number of moles ÷ Volume
To get the number of moles;
Moles = Molarity × volume
= 0.584 M × 0.046 L
= 0.0269 moles
<h3>
Step 2: Calculate the number of moles of Cu(OH)₂ produced </h3>
- From the equation 1 mole of CuSO₄ reacts to give out 1 mole of Cu(OH)₂
- Therefore; Mole ratio of CuSO₄ to Cu(OH)₂ is 1 : 1.
Thus, Moles of CuSO₄ = Moles of Cu(OH)₂
Hence, moles of Cu(OH)₂ = 0.0269 moles
<h3>
Step 3: Calculate the mass of Cu(OH)₂</h3>
To get mass we multiply the number of moles with the molar mass.
Mass = Moles × Molar mass
Molar mass of Cu(OH)₂ is 97.561 g/mol
Therefore;
Mass of Cu(OH)₂ = 0.0269 moles × 97.561 g/mol
= 2.624 g
Thus, the mass of Cu(OH)₂ that will precipitate is 2.624 g
It can allow the molecule (like water) to be polar because it has a negative and positive side to it (oxygen holds the negatives tight causing the hydrogens to be positive).
The correct answer is A.
B is incorrect because that only applies to nuclear fission.
C is incorrect because it only applies to nuclear fusion.
D is incorrect because energy can be neither created nor destroyed meaning that this statement is physically impossible,
The two properties of most non metals are high ionization energy and poor electrical conductivity. The correct option among all the options that are given in the question is option "1".
In general it is known that nonmetals are very poor
conductors of heat and electricity. The nonmetals that are solid are normally
very brittle and has very little or no metallic luster at all. Nonmetals are
highly reactive and show variety of chemical properties. It can also be pointed
out that the nonmetals gain electrons very easily.