Answer:
In a chemical reaction, only the atoms present in the reactants can end up in the products. No new atoms are created, and no atoms are destroyed. In a chemical reaction, reactants contact each other, bonds between atoms in the reactants are broken, and atoms rearrange and form new bonds to make the products.
Explanation:
Answer:
Q = 270 Joules (2 sig. figs. as based on temperature change.)
Explanation:
Heat Transfer Equation of pure condensed phase substance => Q = mcΔT
Mixed phase (s ⇄ l melting/freezing, or l ⇄ g boiling/condensation) heat transfer equation => Q = m∙ΔHₓ; ΔHₓ = phase transition constant
Since this is a pure condensed phase (or, single phase) form of lead (Pb°(s)) and not melting/freezing or boiling/condensation, one should use
Q = m·c·ΔT
m = mass of lead = 35.0g
c = specific heat of lead = 0.16J/g°C
ΔT = Temp change = 74°C - 25°C = 49°C
Q = (35.0g)(0.16J/g·°C )(49°C) = 274.4 Joules ≅ 270 Joules (2 sig. figs. as based on temperature change.)
Answer:
See explanation
Explanation:
This conversion must go through a sequence of steps as i have shown in the image attached to this answer.
The acetone is converted to propan-2-ol using LiAlH4, THF and acid. The propan-2-ol may be converted to propene by E2 elimination. Addition of HBr yields 2-bromo propane.
The Wurtz reaction converts 2-bromo propane to 2,3- dimethyl butane. This can be brominated in the presence of light to yield 3-bromo-2,3-dimethyl butane. Elimination of HBr using a base leads to the formation of the required product as shown.
Plastics are non-corrosive and non-reactive in nature. So they are used for storing chemicals in the laboratory. They are used for strong chemicals because they do not react with chemicals neither do they corrode
Using v1/t1=v2/t2
v1=500
v2=?
t1=75=368k
t2=225=498
500/368=v2/498
1.4x498=v2
v2=697.2ml