Answer:
energy
Explanation:
Those are all forms of energy
The correct answer is 1atm.
<h3>
What is Kinetic theory of gases?</h3>
A lot of the fundamental ideas of thermodynamics were established with the help of the kinetic theory of gases, a straightforward yet historically significant classical model of the thermodynamic behaviour of gases. According to the model, a gas is made up of numerous identical submicroscopic particles (atoms or molecules) that are all moving rapidly and randomly. It is considered that they are substantially smaller in size than the particle spacing on average. Random elastic collisions between the particles and with the container's walls occur between the particles. The simplest form of the model only takes into account the interactions within the ideal gas.
learn more about Kinetic theory of gases refer:
brainly.com/question/3924326
#SPJ4
In descriptive investigations, we still haven't formed any hypothesis yet so we seek information by asking question.
It's not repeatable because repeating the questions over and over again without any clue about what we want to seek is completely waste of time.
Hope this helps xox :)
Alright sorry you're getting the answer hours later, but i can help with this.
so you're looking for specific heat, the equation for it is <span>macaΔTa = - mbcbΔTb with object a and object b. that's mass of a times specific heat of a times final minus initial temperature of a equals -(mass of b times specific heat of b times final minus initial temperature of b)
</span>so putting in your values is, 755g * ca * (75 celsius - 84.5 celsius) = -(50g * cb * (75 celsius - 5 celsius))
well we know the specific heat of water is always 4180J/kg celsius, so put that in for cb
with a bit of simplification to the equation by doing everything on each side first you have, -7172.5 * ca = -14630000
divide both sides by -7172.5 so you can single out ca and you get, ca= 2039.74
add units for specific heat which are J/kg celsius and the specific heat of the material is 2039.74 J/kg celsius