Answer:
Part 1) The explanatory variable is the type of oven
It is a categorical variable
Part 2) The response variable is the baking time
It is a quantitative variable
part 3) two-sample z-test for proportions should be used for the test
Step-by-step explanation:
An explanatory variable is an independent variable that is not affected by all other variables. In this experiment, the type of oven is the input variable and it is not affected by any other variable
A categorical variable is one that has two or more categories without any intrinsic ordering of the categories. The type of oven is either gas or electric, so it is categorical.
A response variable is a dependent variable whose variation depends on other variables. The baking time in this experiment depends on the type of oven used
A quantitative variable is one that take on numerical values.
A two proportion z-test allows you to compare two proportions to see if they are the same. The null hypothesis (H0) for the test is that the proportions are the same. The alternate hypothesis (H1) is that the proportions are not the same.
It is 9 because 11 minus 2 is equal to 9.
Evaluate the power,subtract the numbers then write all the numerator above the common denominator.
<h3>
Answer:</h3>
- using y = x, the error is about 0.1812
- using y = (x -π/4 +1)/√2, the error is about 0.02620
<h3>
Step-by-step explanation:</h3>
The actual value of sin(π/3) is (√3)/2 ≈ 0.86602540.
If the sine function is approximated by y=x (no error at x = 0), then the error at x=π/3 is ...
... x -sin(x) @ x=π/3
... π/3 -(√3)/2 ≈ 0.18117215 ≈ 0.1812
You know right away this is a bad approximation, because the approximate value is π/3 ≈ 1.04719755, a value greater than 1. The range of the sine function is [-1, 1] so there will be no values greater than 1.
___
If the sine function is approximated by y=(x+1-π/4)/√2 (no error at x=π/4), then the error at x=π/3 is ...
... (x+1-π/4)/√2 -sin(x) @ x=π/3
... (π/12 +1)/√2 -(√3)/2 ≈ 0.026201500 ≈ 0.02620