3. Classify each function according to whether it is a vertical stretch, a vertical compression, a horizontal
1 answer:
The classifications of the functions are
- A vertical stretch --- p(x) = 4f(x)
- A vertical compression --- g(x) = 0.65f(x)
- A horizontal stretch --- k(x) = f(0.5x)
- A horizontal compression --- h(x) = f(14x)
<h3>How to classify each function accordingly?</h3>
The categories of the functions are given as
- A vertical stretch
- A vertical compression
- A horizontal stretch
- A horizontal compression
The general rules of the above definitions are:
- A vertical stretch --- g(x) = a f(x) if |a| > 1
- A vertical compression --- g(x) = a f(x) if 0 < |a| < 1
- A horizontal stretch --- g(x) = f(bx) if 0 < |b| < 1
- A horizontal compression --- g(x) = f(bx) if |b| > 1
Using the above rules and highlights, we have the classifications of the functions to be
- A vertical stretch --- p(x) = 4f(x)
- A vertical compression --- g(x) = 0.65f(x)
- A horizontal stretch --- k(x) = f(0.5x)
- A horizontal compression --- h(x) = f(14x)
Read more about transformation at
brainly.com/question/1548871
#SPJ1
You might be interested in
Answer:
Alissa Barnes
blue-relaxed
white-clean
green-organic
turquoise-happy and hungry
yellow-happy and hungry
orange-not hungry
red-very hungry
Answer:
In polynomial function f(x) = 5x² + 2x³ + 4 the leading coefficient is 5.
The leading coefficient of a polynomial is the coefficient of the leading term 5x².
Step-by-step explanation:
so: