Answer:
see attachment
Step-by-step explanation:
We want to choose the graph that represents:
![y = \sqrt[3]{x} + 2](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csqrt%5B3%5D%7Bx%7D%20%20%2B%202)
We know the parent function will be:
![y = \sqrt[3]{x}](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csqrt%5B3%5D%7Bx%7D%20)
There has been a vertical shift upward by 2 units.
Therefore the graph of
![y = \sqrt[3]{x} + 2](https://tex.z-dn.net/?f=y%20%3D%20%20%5Csqrt%5B3%5D%7Bx%7D%20%20%2B%202)
is obtained by shifting the parent function up 2 units.
Its y-intercept will move from 0 to 2.
The graph is shown in attachment.
1.) 70x/100x^2 = 7/10x
2.) 16x^3/24x = 2x^2/3
3.) 7x(2x+1)/21(2x+1) = x/3
4.) 35x - 35/x^2 - 1 = 35/x + 1
5.) x + 7/x^2 + 4x - 21 = 1/x - 3
6.) x^2 - 6x + 5 = x - 5/5
7.) x^2 - 36/x^2 - 3x - 18 = x + 6/x + 3
8.) x^2 - 3x - 10/x^2 + x - 2 = x - 5/x - 1
Step 1: Find the standard error (SE)
The standard error is given by
![SE=\frac{s}{\sqrt[]{n}}](https://tex.z-dn.net/?f=SE%3D%5Cfrac%7Bs%7D%7B%5Csqrt%5B%5D%7Bn%7D%7D)

In this case,

Therefore,
![SE=\frac{0.76}{\sqrt[]{74}}\approx0.0883](https://tex.z-dn.net/?f=SE%3D%5Cfrac%7B0.76%7D%7B%5Csqrt%5B%5D%7B74%7D%7D%5Capprox0.0883)
Step 2: Find the alpha level (α)


Step 3: Find the critical probability (P*)

Therefore,

Step 4: Find the critical value (CV)
The critical value the z-score having a cumulative probability equal to the critical probability (P*).
Using the cumulative z-score table we will find the z-score with value of 0.995
Hence,

Step 5: Find the margin of error (ME)

Therefore,

Step 6: Find the confidence interval (CI)

Therefore,

Hence there is a 99% probability that the true mean will lie in the confidence interval
(16.8725, 17.3275)
182.5 + 50 = 232.5. 267.5 was spent
I think it’s
20,400*10=204,000